

Appendices, v5.4.0

James Bach

james@satisfice.com

www.satisfice.com

Michael Bolton

michael@developsense.com

www.developsense.com

Copyright © 1991-2022, Satisfice, Inc.

mailto:james@satisfice.com
http://www.satisfice.com/
mailto:michael@developsense.com
http://www.developsense.com/

RST Appendices

Version: rst5.4_satisfice

Process Documents
Rapid Testing Framework .. 1
How RST is Different Than Factory-Style Testing ... 3
Heuristic Test Planning Context Model ... 7
How To Evolve a Context-Driven Test Plan ... 9
Satisfice Heuristic Test Strategy Model .. 17
Testing Skills and Dynamics ... 23
About Roles and Actors ... 31
Heuristics of Software Testability ... 33
Heuristics for Evaluating Test Tools ... 37
Heuristics of Risk Analysis .. 41
Good Enough Quality .. 45
Bug Fix Analysis ... 47
A Concise QA Process ... 49

Example Test Notes and Supporting Documents
Putt-Putt Save the Zoo Test Coverage Outline .. 53
Table Formatting Test Notes ... 55
Diskmapper Test Notes .. 57
Exploratory Testing Notes ... 61
Install Risk Catalog .. 81
TNT QA Task Analysis ... 83

Example Test Plans
PCE Scenario Test Plan ... 85
Risk-Based Test Plan (OWL) .. 93
Risk-Based Test Plan #2 .. 101

Example Reports
Y2K Compliance Report .. 107
Test Report - MPIM ... 117
Two Hour Test Report (OEW) .. 123

Readings
How to Talk About Testing ... 125
Investigating Bugs: A Testing Skills Study ... 137
Rapid Testing Guide to Bug Reporting ... 147
A Context-Driven Approach to Automation in Testing .. 155
Tait Testing Clinic: RST Case Study ... 181

Resources
Rapid Testing Bibliography ... 191

 1

 2

How is Rapid Testing different from “Factory Style” testing?

Factory Style

(e.g. ISTQB, TMap, TPI, ISO/IEEE standards,
Six Sigma, TQM, CMM, RUP)

Rapid Software Testing

Basic Idea Follow industry consensus (“best practices”) and
principles of efficient manufacturing.

Products are technological artifacts. Testing is a repetitive
process of collecting facts about products. Humans are
relatively unreliable, however, and skilled people are
expensive and hard to find. It's therefore important to use
a testing methodology that minimizes reliance on
subjective factors and tester creativity. We can do this by
structuring tasks in a manner reminiscent of a
manufacturing plant—explicitly defining procedures and
then monitoring adherence to those procedures.

Fulfill our mission for our clients by developing and applying
skills and heuristics.

Products are solutions that fulfill some need. Testing is an
adaptive process of learning and analysis involving a great
variety of experiments, observations and inferences about
products. Although it is not possible to fully define or
formalize that process, skilled humans are uniquely able to
perform it. We therefore choose to use a methodology that
maximizes freedom, self-regulation, and responsibility. We
can do this by structuring training and culture in a manner
reminiscent of hospitals, law firms, or elite military units—
using practical drills, realistic missions, and other scalable
training methods (along with expert mentoring) to build
skills and create a culture of excellence. The people who do
the work then structure their processes as needed.

Notion of
Product
Quality

A product is a system of elements and behaviors that fulfill
explicitly defined requirements. The quality of a product is
how well it conforms to those requirements. Quality
should be measured objectively.

A product is a system of elements and behaviors, created by
people, that creates a desirable experience or solution for
other people. A product is always produced in some set of
circumstances (we call that the context) and is delivered to
some other context. Value has many aspects, some of which
cannot be made explicit. Meanwhile, context may change
over time. Therefore there can no such thing as an objective
or unchanging measure of quality. We can, however, discuss
and construct a useful consensus about what value we think
we’re delivering.

Purpose of
Testing

The purpose of testing is to detect non-conformances
between a product and its specifications, so that they may
be resolved. Specifications may exist on several levels,
which leads to the concept of verification and validation.
Verification means checking a component against its
immediate spec, while validation means checking that it
fulfills its ultimate requirements (that it is “fit for
purpose”).

The immediate purpose of testing is to understand the truth
about the product. This in turn is done for other purposes.
Usually the broader purpose is to find bugs. That means
informing our clients about what they would consider to be
anything about the product that threatens or unduly limits its
value. In that case, a tester acts as an agent for people who
have the power to decide what the product should be.
Testing is sometimes done for other broad purposes, too,
such as evaluating another testing process, training testers,
or helping customer service prepare to support the product.

Central
Questions of

Testing

Does the product pass all the tests? Are there formal tests
for each defined requirement?

Whom do we serve? What matters to them? Are we confident
we know all the important problems in the product
(regardless of defined requirements)? Without wasting our
time or resources, is the testing adequate to detect every
important problem that could reasonably be found
(regardless of the formality of the testing)?

Unit of
Work

The unit of testing work is usually a "test case," which may
be a detailed set of instructions or a set of data for feeding
to a formal (and perhaps automated) fact-checking
mechanism. Often used interchangeably with the term
"test."

There are no fixed "units of work" as such in RST. Testing is
conceived as a deep intellectual process rather than an
algorithmic mechanism. However, the central unit of concern
in RST is the "test." A test is an experiment performed by a
tester for the purposes of evaluating a product. Tests are
usually embedded in a broader entity called a "test activity."
Test activities may be structured in sessions (uninterrupted
blocks of time), threads, or phases. Test sessions may be
amenable to counting, and in Session-based Test
Management they form a reasonably comparable unit of
work that can be made visible to outsiders.

3

Method of
Control

Artifact-based and procedure-based management: The
process is intended to be manageable, ultimately, by non-
testers or testers-not-present, using detailed instructions
communicated explicitly via formal documents. These
instructions (which may be loosely called “scripts”) are
followed by testers who are not expected to manage the
value of their own time (but are expected to faithfully
follow the instructions).

Documents generally include: test plan, test case
specifications (probably including test procedures as
well), test results, occasionally a traceability matrix, too.

People-based and activity-based management: A tester
managing a test process is called the "responsible tester" for
that work. In RST it is important to trace who is responsible
for each aspect of testing, and for that tester to be
appropriately equipped and skilled in order to fulfill that
role. Skilled testers manage their own processes (which may
include personal supervision of unskilled testers) via a
negotiated mission, formal and informal heuristics, and
ongoing evaluation and communication of the emerging
“testing story” comprised mainly of a description of test
activities.

Testing generally proceeds in an exploratory fashion, even
though it may be formalized (“scripted”) to some degree at
the discretion of the responsible tester. Also, at the tester’s
discretion, many different forms of documents may be used
to help manage the process. Documents are as concise as
possible to minimize maintenance cost and maximize testing
value. Typical documents include: risk outline, product
coverage outline, test activity outline. These are often
manifested as mindmaps or post-it notes.

If high accountability and frequent formal reporting is
needed, consider using thread-based or session-based test
management to package and monitor test activities.

Do not use metrics for any purpose of controlling people; use
metrics only for purposes of casual inquiry, so as to provoke
useful conversations.

Another form of control is explicit heuristics, such as
guidewords arranged in checklists that provide a reviewable
structure to testing that helps when training, coordinating, or
assessing groups of testers.

Approach to
Estimating

Work

Estimate required test cases based on review of
specifications, if possible. Otherwise estimate by analogy
to comparable projects.

Estimate work incrementally as you test or prepare to test,
using the test estimation poster heuristic. Use all available
information to identify necessary activities as well as any
obstacles to the test process. Do not pretend to be able to
predict how many bugs or builds or changes you will have to
deal with—all of which may strongly impact testing.

Avoid estimating if possible, but if needed, estimate test
effort for an ideal (i.e. bug-free and instantly available)
individual test cycle (i.e. testing needed for a single build)
based on a requisite variety of test activities mapped to the
full breadth of coverage areas. Express the estimation as a set
of test session counts.

Approach to
Test Design

Apply any of a list of named test techniques such as
“equivalence class partitioning,” or “boundary testing.”
Another approach is to itemize the parts of the
specifications and write instructions that “try” or “tour”
each of them.

Whatever test design method is used, it should be
standardized across the organization.

Test design is identical to experiment design as practiced in
the sciences. All the methods and skills used in science are
potentially relevant to software testing. We proceed by
conjecture and refutation.

Test design skill is gained through training and practice. Test
techniques are heuristics that require skill, otherwise they
are hollow.

The basic method of test design is to model the product in a
requisite variety of business-relevant ways, then determine
ways to operate and interact with the product that “cover”
the product with respect to those models while applying a
requisite variety of business-relevant oracles to detect
problems.

4

Ideal
Sequence of

Events

1. Receive correct specification.
2. Create test cases based on specification.
3. Set up the test lab and facilities.
4. (if possible) Automate test cases.
5. Receive product to test.
6. Run (or re-run) tests.
7. Report problems.
8. Receive new product with bug fixes.
9. Re-run tests and verify fixes.

There is no ideal sequence. Sequence and phasing of work is
entirely contingent on the testing context. We ask ourselves
“what’s a good thing to do now?” Here are some general
things that happen, which may happen in any order or
portion, simultaneously or incrementally.

 Learn about and model the product.
 Analyze product risk.
 Conceive of worthwhile test activities.
 Test the product and report problems.
 Explain and justify the testing.
 Formalize the testing to improve test integrity.
 Deformalize the testing to expand test coverage.
 Set up the test lab and facilities.
 Modify, redirect, and improve the work as conditions

change.
 Stop doing things that aren’t helping enough.
 Develop and improve relationships with the team.
 Discover and experiment with new tools and methods.

Attitude
Toward
Change

V-Model or Waterfall. Prevent disruptive changes by
proper planning in advance. Document the plan in detail,
and prepare test plan and test cases in advance.
Disciplined planning and communication eliminate
surprises, later on.

We use an agile approach. We focus on preparation rather
than planning. We focus on lowering the cost of exploratory
cycles rather than deciding things up front. Whatever plans
are made are going to change, so let’s adapt to that change
quickly.

Method of
Assessing

Testing

Review test artifacts. Review traceability of test cases to
requirements. Capture and monitor metrics based on test
case counts. Check whether documents conform to all
process requirements. Possibly monitor code coverage
using appropriate tools. Count bugs that escape the test
process.

Discuss the testing with responsible tester. Personally
observe testing (or demonstrations thereof). Observe and
discuss the application of relevant heuristics. Evaluate the
test strategy and test results relative to the needs of the
business (we call that "test framing"). Don’t count bugs that
escape the test process (the count doesn’t mean anything),
instead investigate and learn from each one.

Definition of
Done

All tests performed. Planned testing is complete. At this
point the product is considered validated. The test results
or report is then “signed off” by management.

All important questions about the status of the product have
been answered. Clients are able to make well-informed
decisions about it.

Complete testing is impossible and there is no test for
“always works.” Instead we are obliged to stop when we
conclude that further testing does not seem justified. Since
we may be wrong about this, we evaluate the testing partly
by the performance of the product in the field after the
product is released.

Since understanding of risk changes over the course of
testing (testing is, in fact, an empirical form of risk analysis),
we cannot rely on specific pre-specified “exit criteria” to
decide when to stop. Furthermore, development activity
constantly changes our baseline of understanding.

Role of
Humans

Humans may play any of four roles in Factory School
testing: designing methodologies, designing test
procedures, automating test procedures, or following test
procedures. Methodologists are rarely necessary. Instead,
following perceived consensus standards and "best
practices" is preferred. Test designers are not necessarily
the same people who follow the test procedures that the
designers create, but might be. Test design and execution
are almost always two separate processes, however,
regardless of whether they are done by the same people or
different people. Automation is important, because tools
are seen as a way to make test execution cheap and
reliable.

The role of humans is central. There are three basic roles:
test lead, responsible tester, and supporting tester. A
responsible tester is a tester in charge of testing some part of
a product, and is able to control his own methodology,
procedures, tools, and activities. A test lead is a tester with
three additional responsibilities: creating the conditions
necessary for testing to succeed, coordinating the activities of
other testers and helpers, and training testers. A supporting
tester is someone who does testing activities under the
supervision of a tester or lead, but is not responsible for the
value of his own time. A supporting tester may be a senior
person, such as an experienced developer, who is
temporarily assisting the test process, or perhaps a novice
tester not yet ready to take full responsibility.

Core
Required

Skill

The core skill is procedural discipline (in other words, the
ability to follow instructions). Strongly relates to the
ability to write instructions.

The core skill is ability to learn. This relates to curiosity, play,
puzzle-solving, and tolerance for confusion.

5

Tester
Diversity

Testers should be interchangeable. The test process
benefits from standardization and formalization on all
levels. Industry-wide certification makes it easier to find
and foster appropriately qualified testers.

Each tester is unique, just as each lawyer, writer, or doctor is
unique. Two testers may both be qualified to serve the same
project, but we do not expect them to use the same methods
or strategies, or perform the same tests in the same ways. For
maximum effectiveness, a tester should work in a way that
best exploits his own talents and temperament. The
appropriate unit of analysis is the team, not the tester.
Testing is served best by a diversified team—because that
minimizes the probability of missing an important problem.

Role of Tacit
Knowledge

There is no official role for tacit knowledge, although some
techniques are defined as “experience-based” and job
descriptions sometimes call for a certain number of years
of experience, presumably because that may be correlated
with higher competence of some unidentified kind.

Tacit knowledge is extremely important. The RST
methodology is based on the premise that much of
competence is tacit (unspoken) and is conveyed not through
listening or reading to explicit instructions, but rather
through observation of natural work, deliberative practical
problem-solving, and live coaching by a supervisor. RST
makes extensive and systematic use of heuristics that
activate and direct tacit knowledge and skill.

 Shifting
Work to a

New Tester

The role of humans should be minimized. In a well-run
factory-style test process, it shouldn't matter who is doing
the testing. The testing artifacts define the testing so that
anyone can read them. Any new tester reads the
documentation and follows the procedures. Automation
should be used wherever possible to make this a moot
point.

The role of humans is primary. Every tester is different. No
one is interchangeable, even though all competent testers are
potentially interoperable.

Any skilled tester is capable of testing any product from
scratch, to a reasonable degree, given reasonable time to
prepare. Any unskilled tester will be working under
supervision. If there are no skilled testers, then good testing
will be impossible no matter what methodology you try.

In any situation where testing is or should be formalized,
records of some kind are typically produced. Concise notes,
tables, or other artifacts—up to and including extremely
detailed and rigorous test procedure documentation—may
be created. A tester may use such material to take over
testing from another tester. However, the receiving tester
must be able to take full responsibility for the contents of
what he inherits.

Any mysterious document or tool must be discarded or
recreated. Mysterious instructions are a potential hazard to
the project.

Testers may also pass work to each other through paired
work, or through talking or live demonstration.

Role of
Tools

Tools should be used to store and track testing documents
and artifacts, as well as to automate test execution as
much as possible.

Tool use should be standardized across the organization.

In RST, we say testing cannot be automated, because any
testing-like activity done exclusively by an algorithmic
process is called “checking.” We do this for the same reason
that programmers call automated programming “compiling.”
It is important to distinguish between the capability and
responsibility of humans vs. that of machines.

However, testing may be supported and expanded by the use
of tools. Testers and test teams are strongly encouraged to
innovate and experiment with tools. Testers should develop
or acquire any tools that might help make their testing more
powerful or reliable, as long as these don't cost too much or
create an unhelpful bias in test coverage.

While it is not required or even desirable for every tester to
be a programmer, a high functioning test team will have the
ability to put tools in place quickly and inexpensively as the
needs arise.

6

Exploit

Heuristic Test Planning:
Context Model

Product
Project Lifecycle
Project Management
Configuration Management
Defect Prevention
Development Team

Development

Test Team
Expertise
Loading
Cohesion
Motivation
Leadership
Project Integration

Test Lab
Test Platforms
Test Tools
Test Library
Problem Tracking System
Office Facilities

Product Mission
Stakeholders
Quality Criteria
Reference Material

Requirements

Test
Process

Strategy
Logistics
Products

Missions
Find Important Problems
Assess Quality/Risk
Certify to Standard
Fulfill Process Mandates
Satisfy Stakeholders
Assure Accountability

Advise about QA
Advise about Testing
Advise about Quality
Maximize Efficiency
Minimize Cost
Minimize Time

Designed by James Bach, http://www.satisfice.com
Copyright (c) 2000, Satisfice, Inc.

v1.2

Require

Enable
Constrain

Motivate

GIVENS MISSIONS

How Context Influences the Test Plan

CHOICES

7

Context-Driven Planning

1. Understand who is involved in the project and how they matter.

2. Understand and negotiate the GIVENS so that you understand

the constraints on your work, understand the resources available,
and can test effectively.

3. Negotiate and understand the MISSIONS of testing in your

project.

4. Make CHOICES about how to test that exploit the GIVENS and

allow you to achieve your MISSIONS.

5. Monitor the status of the project and continue to adjust the plan as

needed to maintain congruence among GIVENS, CHOICES, and
MISSIONS.

Test Process Choices

We testers and test managers don’t often have a lot of control over the context of our work.
Sometimes that’s a problem. A bigger problem would be not having control over the work itself.
When a test process is controlled from outside the test team, it’s likely to be much less efficient and
effective. This model is designed with the assumption that there are three elements over which you
probably have substantial control: test strategy, test logistics, and test products. Test planning is
mainly concerned with designing these elements of test process to work well within the context.

Test strategy is how you cover the product and detect problems. You can’t test everything in every
way, so here’s where you usually have the most difficult choices.

Test logistics is how and when you apply resources to execute the test strategy. This includes how
you coordinate with other people on the project, who is assigned to what tasks, etc.

Test products are the materials and results you produce that are visible to the clients of testing.
These may include test scripts, bug reports, test reports, or test data to name a few.

8

Designed by James Bach, Satisfice, Inc. v2.3 11/3/18

http://www.satisfice.com Copyright © 2001-18, Satisfice, Inc.

 Page 1 of 7

How To Evolve a

Context-Driven Test Plan

This guide will assist you with your test planning. Remember, the real test plan is the set of ideas that

actually guides your testing. We’ve designed the guide to be helpful whether or not you are writing a test

plan document.

This is not a template. It’s not a format to be “filled out.” It’s a set of ideas meant to jog your thinking, so

you’ll be less likely to forget something important. We use terse language and descriptions that may not be

suited to a novice tester. It’s designed more to support an experienced tester or test lead.

Below are seven task themes. Visit the themes in any order. In fact, jump freely from one to the other. Just

realize that the quality of your test plan is related to how well you’ve performed tasks and considered

issues like the ones documented below. The Status Check sections will help you decide when you have a

good enough plan, but we recommend revisiting and revising your plan (at least in your head) throughout

the project.

1. Monitor major test planning challenges.

Look for risks, roadblocks, or other challenges that will impact the time, effort, or feasibility of planning a practical
and effective test strategy. Get a sense for the overall scope of the planning effort. Monitor these issues
throughout the project.

Status Check

❑ Are any product quality standards especially critical to achieve or difficult to measure?

❑ Is the product especially complex or hard to learn? (…then you will need more time)

❑ Will testers require special training or tools? (…then better go get that soon)

❑ Are you remote from the users of the product? (…then might have to work harder to understand them)

❑ Are you remote from any of your clients? (…then set up more disciplined process of communication)

❑ Is any part of the test platform difficult to obtain or configure? (…then warn your clients about that)

❑ Will you test unintegrated or semi-operable product components? (…then prep tools and environments)

❑ Are there any particular testability problems? (…then advocate for testability)

❑ Does the project team lack experience with the product design, technology, or user base?

❑ Does test execution have to start soon? (…then focus on what you really need to get started)

❑ Is any information needed for planning not yet available? (…then warn your clients you need it)

❑ Are you unable to review a version of the product to be tested (even a demo, prototype, or old version)?

❑ Is adequate testing staff difficult to hire or organize? (…then don’t wait long before trying to do that)

❑ Must you adhere to an unfamiliar test methodology? (…then you better study it and see if you can)

❑ Are you being pressured to formalize too soon? (…then push back, because informality comes first)

❑ Are project plans made without regard to testing needs? (…then warn your clients that will impair testing)

❑ Is the plan subject to lengthy negotiation or approval? (…then start ASAP)

❑ Are project plans changing frequently? (…then establish a way to find out when they do)

❑ Will the plan be subject to audit? (…then find out what that audit process is and when it happens)

❑ Are your clients unsure of what they want from you? (…then tell them what they should want)

9

Designed by James Bach, Satisfice, Inc. v2.3 11/3/18

http://www.satisfice.com Copyright © 2001-18, Satisfice, Inc.

 Page 2 of 7

2. Know your mission.

Any or all of the goals below may be part of your testing mission, and some more important than others. Based on
your knowledge of the project, rank these goals. For any that apply, discover any specific success metrics by
which you’ll be judged.

Mission Elements to Consider

❑ Find important problems fast.

❑ Perform a comprehensive quality assessment.

❑ Certify product quality against a specific standard.

❑ Minimize testing time or cost.

❑ Maximize testing efficiency.

❑ Advise clients on improving quality or testability.

❑ Advise clients on how to test.

❑ Assure that the test process is fully accountable.

❑ Rigorously follow certain methods or instructions.

❑ Satisfy particular stakeholders.

Possible Work Products

❑ Brief email outlining your mission.

❑ One-page test project charter.

Status Check

❑ Do you know who your clients are?

❑ Do the people who matter agree on your mission?

❑ Is your mission sufficiently clear that you can base your planning on it?

10

Designed by James Bach, Satisfice, Inc. v2.3 11/3/18

http://www.satisfice.com Copyright © 2001-18, Satisfice, Inc.

 Page 3 of 7

3. Know the product.

Get to know the product and the underlying technology. Learn how the product will be used. Steep yourself in it.
As you progress through the project, your testing will become better because you will be more of a product expert.

What to Analyze

❑ Users (who they are and what they do)

❑ Structure (code, files, etc.)

❑ Functions (what the product does)

❑ Data (input, output, states, etc.)

❑ Interfaces (user interfaces, APIs, connections to platform components)

❑ Platforms (external hardware and software)

❑ Operations (how product is used in real life)

❑ Timing (performance variables, periodic functionalities, race conditions)

Ways to Analyze

❑ Perform survey testing (testing with the primary goal of learning about the product).

❑ Apply the Heuristic Test Strategy Model product elements guidewords.

❑ Review product and project documentation.

❑ Interview designers and users.

❑ Compare w/similar products.

Possible Work Products

❑ Product coverage outline

❑ Annotated specifications

❑ Product bug list

❑ Project issue list

Status Check

❑ Do designers approve of the product coverage outline?

❑ Do designers think you understand the product?

❑ Can you visualize the product and predict behavior?

❑ Are you able to produce test data (input and results)?

❑ Can you configure and operate the product?

❑ Do you understand how the product will be used?

❑ Are you aware of gaps or inconsistencies in the design?

❑ Have you considered tacit specifications as well as explicit?

11

Designed by James Bach, Satisfice, Inc. v2.3 11/3/18

http://www.satisfice.com Copyright © 2001-18, Satisfice, Inc.

 Page 4 of 7

4. Know the risk.

How might this product fail in a way that matters? At first you’ll have a general idea, at best. As you progress
through the project, your test strategy, your testing will become better because you’ll learn more about the failure
dynamics of the product.

What to Analyze

❑ Threats (challenging situations and data)

❑ Vulnerabilities (where it’s likely to fail)

❑ Failure modes (possible kinds of problems)

❑ Victim impact (how problems matter)

Ways to Analyze

❑ Perform survey testing or general shallow testing to identify risk hotspots.

❑ Review product against risk heuristics and quality criteria categories.

❑ Review requirements and specifications.

❑ Review actual failures in the lab or in the field.

❑ Review code and architecture to understand failure modes and fault propagation pathways.

❑ Interview designers and users.

❑ Use a risk catalog to identify problems you want to specifically test for.

Possible Work Products

❑ Component/risk matrix (outline of the parts of the product and risk factors associated with them)

❑ List of risk areas (clusters of related suspected risks)

❑ List of risk factors (threats and vulnerabilities)

❑ Risk catalog (outline of all the kinds of problems that typically occur with that technology)

Status Check

❑ Do the designers and users concur with the risk analysis?

❑ Will you be able to detect all significant kinds of problems, should they occur during testing?

❑ Do you know where to focus testing effort for maximum effectiveness?

❑ Can the designers do anything to make important problems easier to detect, or less likely to occur?

❑ What makes you think your risk analysis is any good? Have a compelling story about that.

12

Designed by James Bach, Satisfice, Inc. v2.3 11/3/18

http://www.satisfice.com Copyright © 2001-18, Satisfice, Inc.

 Page 5 of 7

5. Decide the test strategy.

What can you do to test rapidly and effectively based on the best information you have about the product? Make
the best decisions you can, up front, but let your strategy improve throughout the project.

Consider Techniques From Five Perspectives

❑ Tester-focused techniques.

❑ Coverage-focused techniques (both structural and functional).

❑ Problem-focused techniques.

❑ Activity-focused techniques.

❑ Oracle-focused techniques.

Ways to Plan

❑ Match techniques to risks and product areas.

❑ Visualize specific and practical techniques.

❑ Diversify your strategy to minimize the chance of missing important problems.

❑ Look for ways automation could allow you to expand your strategy.

❑ Don’t overplan. Testers must stay awake by using their brains.

Possible Work Products

❑ Itemized statement of each test strategy chosen and how it will be applied.

❑ Risk/task matrix.

❑ List of issues or challenges inherent in the chosen strategies.

❑ Advisory of poorly covered parts of the product.

❑ Test cases (only if required)

Status Check

❑ Do your clients concur with the test strategy?

❑ Is everything in the test strategy necessary?

❑ Can you actually carry out this strategy?

❑ Is the test strategy too generic—could it just as easily apply to any product?

❑ Is there any category of important problem that you know you are not testing for?

❑ Has the strategy made use of available resources and helpers?

13

Designed by James Bach, Satisfice, Inc. v2.3 11/3/18

http://www.satisfice.com Copyright © 2001-18, Satisfice, Inc.

 Page 6 of 7

6. Know the logistics.

How will you implement your strategy? Your test strategy is profoundly affected by logistical constraints or
mandates. Try to negotiate for the resources you need and exploit whatever you have.

Logistical Areas

❑ Making contact with users

❑ Making contact with your clients

❑ Test effort estimation and scheduling

❑ Testability advocacy

❑ Test team staffing (right skills)

❑ Tester training and supervision

❑ Tester task assignments

❑ Product information gathering and management

❑ Project meetings, communication, and coordination

❑ Relations with all other project functions, including development

❑ Test platform acquisition and configuration

❑ Agreements and protocols

❑ Test tools and automation

❑ Stubbing and simulation needs

❑ Test documentation management and maintenance

❑ Build and transmittal protocol

❑ Test cycle administration, especially after changes

❑ Bug reporting system and protocol

❑ Test status reporting protocol

❑ Code freeze and incremental testing

❑ Pressure management in the end game

❑ Sign-off protocol

❑ Evaluation of test effectiveness, including escaped bug analysis

Possible Work Products

❑ Project agreements

❑ Project issues list

❑ Project risk analysis

❑ Responsibility matrix

❑ Test schedule

Status Check

❑ Do the logistics of the project support the test strategy?

❑ Are there any problems that block testing?

❑ Are the logistics and strategy adaptable in the face of foreseeable problems?

❑ Can you start testing now and sort out the rest of the issues later?

14

Designed by James Bach, Satisfice, Inc. v2.3 11/3/18

http://www.satisfice.com Copyright © 2001-18, Satisfice, Inc.

 Page 7 of 7

7. Share the plan.

You are not alone. The test process must serve the project. So, involve the project in your test planning process.
You don’t have to be grandiose about it. At least chat with key members of the team to get their perspective and
implicit consent to pursue your plan.

Ways to Share

❑ Engage designers and stakeholders in the test planning process.

❑ Actively solicit opinions about the test plan.

❑ Do everything possible to help the developers succeed.

❑ Help the developers understand how what they do impacts testing.

❑ Talk to technical writers and technical support people about sharing quality information.

❑ Get designers and developers to review and approve reference materials.

❑ Record and track agreements.

❑ Get people to review the plan in pieces.

❑ Improve reviewability by minimizing unnecessary text in test plan documents.

Goals

❑ Common understanding of the test process.

❑ Common commitment to the test process.

❑ Reasonable participation in the test process.

❑ Management has reasonable expectations about the test process.

Status Check

❑ Is the project team paying attention to the test plan?

❑ Does the project team, especially first line management, understand the role of the test team?

❑ Does the project team feel that the test team has the best interests of the project at heart?

❑ Is there an adversarial or constructive relationship between the test team and the rest of the project?

❑ Does anyone feel that the testers are “off on a tangent” rather than focused on important testing?

15

 16

- 1 -

Designed by James Bach Version 5.9
james@satisfice.com 8/26/2021
www.satisfice.com Copyright 1996-2021, Satisfice, Inc.

Heuristic Test Strategy Model

The Heuristic Test Strategy Model is a set of patterns for designing and choosing tests to perform. The
immediate purpose of this model is to remind testers of what to think about during that process. I encourage
testers to customize it to fit their own organizations and contexts.

Project Environment represents a set of context factors that include resources, constraints, and other elements
in the project that may enable or hobble our testing. Sometimes a tester must challenge constraints, and
sometimes accept them.

Product Elements are aspects of the product that you consider testing, including aspects intrinsic to the product
and relationships between the product and things outside it. Software is complex and invisible. Take care to
cover all of it that matters, not just the parts that are easy to see.

Quality Criteria Categories are dimensions in which people determine the value of the product. You can also
think of them as categories of product risk. Quality criteria are subjective and multidimensional and often
hidden or contradictory.

General Test Techniques are heuristics for designing tests. How, where, and when to apply a particular
technique requires an analysis of project environment, product elements, and quality criteria.

The Testing and Quality Story is the result of testing. You can never know the "actual" quality of a software
product— you can’t “verify” quality, as such— but by performing tests, you can make an assessment, and that
takes the form of a story you tell (including bugs, curios, etc.).

17

- 2 -

General Test Techniques
A test technique is a heuristic for designing tests. There are many interesting techniques. The list includes nine families of
general techniques. By “general technique” we mean that the technique is simple and universal enough to apply to a wide
variety of contexts. Many specific techniques are based on one or more of these families. And an endless variety of specific
test techniques may be constructed by combining one or more general techniques with coverage ideas from the other lists
in this model.

Function Testing

Test what it can do
1. Identify things that the product can do (functions and sub-

functions).
2. Determine how you’d know if a function was capable of

working.
3. Test each function, one at a time.
4. See that each function does what it’s supposed to do and

not what it isn’t supposed to do.

Claims Testing
Challenge every claim

1. Identify reference materials that include claims about the
product (tacit or explicit). Consider SLAs, EULAs,
advertisements, specifications, help text, manuals, etc.

2. Analyze individual claims, and clarify vague claims.
3. Test each claim about the product.
4. If you’re testing from an explicit specification, expect it and the

product to be brought into alignment.

Domain Testing
Partition the data

1. Look for any data processed by the product. Look at
outputs as well as inputs.

2. Decide which particular data to test with. Consider things
like boundary values, typical values, convenient values,
invalid values, or best representatives.

3. Consider combinations of data worth testing together.

User Testing
Involve the users

1. Identify categories and roles of users.
2. Determine what each category of user will do (use cases), how

they will do it, and what they value.
3. Get real user data, or bring real users in to test.
4. Otherwise, systematically simulate a user (be careful—it’s

easy to think you’re like a user even when you’re not).
5. Powerful user testing is that which involves a variety of users

and user roles, not just one.

Stress Testing
Overwhelm the product

1. Look for sub-systems and functions that are vulnerable to
being overloaded or “broken” in the presence of
challenging data or constrained resources.

2. Identify data and resources related to those sub-systems
and functions.

3. Select or generate challenging data, or resource constraint
conditions to test with: e.g., large or complex data
structures, high loads, long test runs, many test cases, low
memory conditions.

Risk Testing
Imagine a problem, then look for it.

1. What kinds of problems could the product have?
2. Which kinds matter most? Focus on those.
3. How would you detect them if they were there?
4. Make a list of interesting problems and design tests

specifically to reveal them.
5. It may help to consult experts, design documentation, past bug

reports, or apply risk heuristics.

Flow Testing
Do one thing after another

1. Perform multiple activities connected end-to-end; for
instance, conduct tours through a state model.

2. Don’t reset the system between actions.

3. Vary timing and sequencing, and try parallel threads.

Automatic Checking
Check a zillion different facts

1. Look for or develop tools that can perform a lot of actions and
check a lot of things.

2. Consider tools that partially automate test coverage.

3. Consider tools that partially automate oracles.
4. Consider automatic change detectors.
5. Consider automatic test data generators.
6. Consider tools that make human testing more powerful.

Scenario Testing
Test to a compelling story

1. Begin by thinking about everything going on around the
product.

2. Design tests that involve meaningful and complex
interactions with the product.

3. A good scenario test is a compelling story of how someone
who matters might do something that matters with the
product.

18

- 3 -

Project Environment

Creating and executing tests is the heart of the test project. However, there are many factors in the project environment
that are critical to your decision about what specific tests to create. In each category, below, consider how that element
may help or hinder your test design process. Try to exploit every resource.

Mission. Your purpose on this project, as understood by you and your customers.
• Why are you testing? Are you motivated by a general concern about quality or specific and defined risks?
• Do you know who the customers of your work are? Whose opinions matter? Who benefits or suffers from the work you do?
• Maybe the people you serve have strong ideas about what tests you should create and run. Find out.
• Have you negotiated project conditions that affect your ability to accept your mission?

Information. Information about the product or project that is needed for testing.
• Whom can we consult with to learn about this project?
• Are there any engineering documents available? User manuals? Web-based materials? Specs? User stories?
• Does this product have a history? Old problems that were fixed or deferred? Pattern of customer complaints?
• Is your information current? How are you apprised of new or changing information?
• Are there any comparable products or projects from which we can glean important information?

Developer Relations. How you get along with the programmers.
• Rapport: Have you developed a friendly working relationship with the programmers?

• Hubris: Does the development team seem overconfident about any aspect of the product?

• Defensiveness: Is there any part of the product the developers seem strangely opposed to having tested?

• Feedback loop: Can you communicate quickly, on demand, with the programmers?

• Feedback: What do the developers think of your test strategy?

Test Team. Anyone who will perform or support testing.
• Do you know who will be testing? Do they have the knowledge and skills they need?
• Are there people not on the “test team” that might be able to help? People who’ve tested similar products before and might

have advice? Writers? Users? Programmers?
• Are there particular test techniques that someone on the team has special skill or motivation to perform?
• Who is co-located and who is elsewhere? Will time zones be a problem?

Equipment & Tools. Hardware, software, or documents required to administer testing.
• Hardware: Do you have all the physical or virtual hardware you need for testing? Do you control it or share it?

• Automated Checking: Do you have tools that allow you to control and observe product behavior automatically?

• Analytical Tools: Do you have tools to create test data, design scenarios, or to analyze and track test results?

• Matrices & Checklists: Are any documents needed to track or record the progress of testing?

Schedule. The sequence, duration, and synchronization of project events
• Test Design: How much time do you have? Are there tests better to create later than sooner?

• Test Execution: When will tests be performed? Are some tests performed repeatedly, say, for regression purposes?

• Development: When will builds be available for testing, features added, code frozen, etc.?

• Documentation: When will the user documentation be available for review?

Test Items. The product to be tested.
• Scope: What parts of the product are and are not within the scope of your testing responsibility?

• Availability: Do you have the product to test? Do you have test platforms available? Will you test in production?

• Interoperable Systems: Are any third-party services required for your product that must be mocked or made available?

• Volatility: Is the product constantly changing? How will you find out about changes?

• New Stuff: Do you know what has recently been changed or added in the product?

• Testability: Is the product functional and reliable enough that you can effectively test it?

• Future Releases: What part of your testing, if any, must be designed to apply to future releases of the product?

Deliverables. The observable products of the test project.
• Content: What sort of reports will you have to make? Will you share your working notes, or just the end results?

• Purpose: Are your deliverables provided as part of the product? Does anyone else have to run your tests?

• Standards: Is there a particular test documentation standard you’re supposed to follow?

• Media: How will you record and communicate your reports?

19

- 4 -

Product Elements
Ultimately a product is an experience or solution provided to a customer. Products have many dimensions. Each category,

listed below, represents an important and unique element to be considered in the test strategy.
Structure. Everything that comprises the physical product.

• Code: the code structures that comprise the product, from executables to individual routines.

• Hardware: any hardware component that is integral to the product.

• Service: any server or process running independently of others that may comprise the product.

• Non-executable files: any files other than multimedia or programs, like text files, sample data, or help files.

• Collateral: anything beyond that is also part of the product, such as paper documents, web pages, packaging, license agreements, etc.

Function. Everything that the product does.
• Multi-user/Social: any function designed to facilitate interaction among people or to allow concurrent access to the same resources.

• Calculation: any arithmetic function or arithmetic operations embedded in other functions.

• Time-related: time-out settings; periodic events; time zones; business holidays; terms and warranty periods; chronograph functions.

• Security-related: rights of each class of user; protection of data; encryption; front end vs. back end protections; vulnerabilities in sub-systems.

• Transformations: functions that modify or transform something (e.g. setting fonts, inserting clip art, withdrawing money from account).

• Startup/Shutdown: each method and interface for invocation and initialization as well as exiting the product.

• Multimedia: sounds, bitmaps, videos, or any graphical display embedded in the product.

• Error Handling: any functions that detect and recover from errors, including all error messages.

• Interactions: any interactions between functions within the product.

• Testability: any functions provided to help test the product, such as diagnostics, log files, asserts, test menus, etc.

Data. Everything that the product processes.
• Input/Output: any data that is processed by the product, and any data that results from that processing.

• Preset: any data that is supplied as part of the product, or otherwise built into it, such as prefabricated databases, default values, etc.

• Persistent: any data that is expected to persist over multiple operations. This includes modes or states of the product, such as options settings,

view modes, contents of documents, etc.

• Interdependent/Interacting: any data that influences or is influenced by the state of other data; or jointly influences an output.

• Sequences/Combinations: any ordering or permutation of data, e.g. word order, sorted vs. unsorted data, order of tests.

• Cardinality: numbers of objects or fields may vary (e.g. zero, one, many, max, open limit). Some may have to be unique (e.g. database keys).

• Big/Little: variations in the size and aggregation of data.

• Invalid/Noise: any data or state that is invalid, corrupted, or produced in an uncontrolled or incorrect fashion.

• Lifecycle: transformations over the lifetime of a data entity as it is created, accessed, modified, and deleted.

Interfaces. Every conduit by which the product is accessed or expressed.
• User Interfaces: any element that mediates the exchange of data with the user (e.g. displays, buttons, fields, whether physical or virtual).

• System Interfaces: any interface with something other than a user, such as other programs, hard disk, network, etc.

• API/SDK: any programmatic interfaces or tools intended to allow the development of new applications using this product.

• Import/export: any functions that package data for use by a different product, or interpret data from a different product.

Platform. Everything on which the product depends (and that is outside your project).
• External Hardware: hardware components and configurations that are not part of the shipping product, but are required (or optional) for the

product to work: systems, servers, memory, keyboards, the Cloud.

• External Software: software components and configurations that are not a part of the shipping product, but are required (or optional) for the

product to work: operating systems, concurrently executing applications, drivers, fonts, etc.

• Embedded Components: libraries and other components that are embedded in your product but are produced outside your project.

• Product Footprint: The resources in the environment that are used, reserved, or consumed by the product (memory, filehandles, etc.)

Operations. How the product will be used.
• Users: the attributes of the various kinds of users.

• Environment: the physical environment in which the product operates, including such elements as noise, light, and distractions.

• Common Use: patterns and sequences of input that the product will typically encounter. This varies by user.

• Disfavored Use: patterns of input produced by ignorant, mistaken, careless or malicious use.

• Extreme Use: challenging patterns and sequences of input that are consistent with the intended use of the product.

Time. Any relationship between the product and time.
• Input/Output: when input is provided, when output created, and any timing relationships (delays, intervals, etc.) among them.

• Fast/Slow: testing with “fast” or “slow” input; fastest and slowest; combinations of fast and slow.

• Changing Rates: speeding up and slowing down (spikes, bursts, hangs, bottlenecks, interruptions).

• Concurrency: more than one thing happening at once (multi-user, time-sharing, threads, and semaphores, shared data).

20

- 5 -

Quality Criteria Categories
A quality criterion is some requirement that defines what the product should be. By thinking about different kinds of
criteria, you will be better able to plan tests that discover important problems fast. Each of the items on this list can be
thought of as a potential risk area. For each item below, determine if it is important to your project, then think how you
would recognize if the product worked well or poorly in that regard.

Capability. Can it perform the required functions?
• Sufficiency: the product possesses all the capabilities necessary to serve its purpose.

• Correctness: it is possible for the product to function as intended and produce acceptable output.

Reliability. Will it work well and resist failure in all required situations?
• Robustness: the product continues to function over time without degradation, under reasonable conditions.

• Error handling: the product resists failure in the case of bad data, is graceful when it fails, and recovers readily.

• Data Integrity: the data in the system is protected from loss or corruption.

• Safety: the product will not fail in such a way as to harm life or property.

Usability. How easy is it for a real user to use the product?

• Learnability: the operation of the product can be rapidly mastered by the intended user.

• Operability: the product can be operated with minimum effort and fuss.

• Accessibility: the product meets relevant accessibility standards and works with O/S accessibility features.

Charisma. How appealing is the product?
• Aesthetics: the product appeals to the senses.

• Uniqueness: the product is new or special in some way.

• Entrancement: users get hooked, have fun, are fully engaged when using the product.

• Image: the product projects the desired impression of quality.

Security. How well is the product protected against unauthorized use or intrusion?
• Authentication: the ways in which the system verifies that a user is who he says he is.

• Authorization: the rights that are granted to authenticated users at varying privilege levels.

• Privacy: the ways in which customer or employee data is protected from unauthorized people.

• Security holes: the ways in which the system cannot enforce security (e.g. social engineering vulnerabilities)

Scalability. How well does the deployment of the product scale up or down?

Compatibility. How well does it work with external components & configurations?
• Application Compatibility: the product works in conjunction with other software products.

• Operating System Compatibility: the product works with a particular operating system.

• Hardware Compatibility: the product works with particular hardware components and configurations.

• Backward Compatibility: the products works with earlier versions of itself.

• Product Footprint: the product doesn’t unnecessarily hog memory, storage, or other system resources.

Performance. How speedy and responsive is it?

Installability. How easily can it be installed onto its target platform(s)?
• System requirements: Does the product recognize if some necessary component is missing or insufficient?

• Configuration: What parts of the system are affected by installation? Where are files and resources stored?

• Uninstallation: When the product is uninstalled, is it removed cleanly?

• Upgrades/patches: Can new modules or versions be added easily? Do they respect the existing configuration?

• Administration: Is installation a process that is handled by special personnel, or on a special schedule?

Development. How well can we create, test, and modify it?
• Supportability: How economical will it be to provide support to users of the product?

• Testability: How effectively can the product be tested?

• Maintainability: How economical is it to build, fix or enhance the product?

• Portability: How economical will it be to port or reuse the technology elsewhere?

• Localizability: How economical will it be to adapt the product for other places?

21

 22

Elements of Excellent Testing
Created by James Bach, Jonathan Bach, and Michael Bolton v4.2 Copyright © 2005-2022, Satisfice, Inc.

Science is testing; and testing is science. The world of commercial product testing differs from the world of science

mainly in its object, not its subject or its process: we who test products apply ourselves to the study of an ephemeral

human contrivance rather than the natural world. This is a human learning process.

Testing, like science, is an exploratory

process that also makes use of scripted

elements. The “gears” in the diagram to

the left represent activities that evolve

over time, feeding each other.

The rectangles are artifacts that result

from those activities.

At the center, analysis drives the whole

process. The four connection points to

analysis are worth examining closer.

Learning: The connections between

analysis and knowledge might be called the

learning loop. In this interaction the tester is

reviewing and thinking about, and applying

what he knows.

Testing: The connection between analysis

and experiment might be called the testing

loop (in the sense of performing tests). It is

dominated by questions about the status of

the product. It may involve algorithmic

processes such as automated output

checking.

Collaboration: The connections between

analysis and other people might be called

the collaboration loop. Testing is always a

social process to some degree, and group

testing can be very energizing.

Self-management: The connection

between analysis and the testing story is

self-management, by which the whole

process is regulated. Self-management is

driven by stories we tell ourselves.

23

Evolving Work Products

As testing proceeds, look for any of the following to be created, refined, and possibly documented during the process.

 Test Ideas. Any idea or part of an idea, written or unwritten, that may guide the performance of a

test or check.

 Output Checks. Mechanized or mechanizable processes for gathering product observations and

evaluating them. A test is always human-guided, whereas a check, by definition, can be completely

automated. A test often includes one or more checks, but a check cannot include a test.

 Testability Ideas. How can the product be made easier to test?

 Test Results. We may need to maintain or update test results as a baseline or historical record.

 Bug Reports. Reports regarding anything about the product that threatens its value.

 Issue Reports. Reports regarding anything about the project that threatens its value.

 Test Conditions (Product Coverage Outline). A test condition is anything about the product

we might want to examine with a test. A product coverage outline is an outline, list or table of

interesting test conditions.

 Product Risks. Any potential areas of bugginess or types of bug.

 Test Data. Any data available for use in testing.

 Test Tools. Any tools acquired or developed to aid testing (includes automated output checks).

 Test Strategy. The set of ideas that guide our test design.

 Test Infrastructure and Lab Procedures. General practices, protocols, controls, and systems

that provide a basis for excellent testing.

 Test Estimation. Ideas about what we need and how much time we need and what obstacles

might be in our way.

 Testing Story. What we know about our testing, so far.

 Product Story. What we know about the status of the product, so far.

 Test Process Assessment. Our own assessment of the quality of our test process.

 Tester and Team. The tester and the team evolves over the course of the project.

 Technical and Domain Knowledge. Our knowledge about how the product works and how it is

used.

24

Testing Skills and Tactics

These are the skills (or tactics that involve skill) needed for professional and cost effective product testing. Each is

distinctly observable and learnable, and each is necessary for excellent exploratory work.

Self-Management Skills and Tactics

Chartering your work. Making decisions about what you will work on and how you will work. Deciding

the testing story you want to manifest; knowing your client’s needs, the problems you must solve, and

assuring that your work is on target.

Establishing procedures and protocols. Designing ways of working that allow you to manage your

study productively. This also means becoming aware of critical patterns, habits, and behaviors that may be

intuitive and bringing them under control.

Establishing the conditions you need to succeed. Wherever feasible and to the extent feasible,

establish control over the surrounding environment such that your tests and observations will not be disturbed

by extraneous and uncontrolled factors.

Self-care. Monitoring your emotional, physical, and mental states as they influence your testing; taking

effective action to manage your energy and maintain a positive outlook; self-forgiveness.

Self-criticism. Finding problems in your work and correcting them; awareness and acknowledgement of

your strengths and weaknesses as a tester.

Test status evaluation. Maintaining an awareness of problems, obstacles, limitations and biases in your

testing; understanding the cost vs. value of the work; constructing the testing story.

Ethics. Understanding your ethical code and fulfilling your responsibilities under it as you work.

Branching your work and backtracking. Allowing yourself to be productively distracted from a course

of action to explore an unanticipated new idea; identifying opportunities and pursuing them without losing

track of your process.

Focusing your work. Isolating and controlling factors to be studied; repeating experiments; limiting

change; precise observation; defining and documenting procedures; optimizing effort; using focusing

heuristics.

De-focusing your work. Expanding the scope of your study; diversifying your work; changing many

factors at once; broad observation; trying new procedures; using defocusing heuristics.

Alternating activities to improve productivity. Switching among complementary activities or

perspectives to create or relieve productive tension and make faster progress. See Exploratory Testing

Polarities.

Maintaining useful and concise records. Preserving information about your process, progress, and

findings.

Knowing when to stop. Selecting and applying stopping heuristics to determine when you have achieved

good enough progress and results, or when your exploration is no longer worthwhile.

Developing and maintaining credibility. No one will listen to you if they think what you say is not

interesting or important. Remember, a tester has very little visible work, so your reputation is paramount.

25

Collaboration Skills and Tactics

Getting to know people. Meeting and learning about the people around you who might be helpful, or

whom you might help; developing a collegial network within your project and beyond.

Conversation. Talking through and elaborating ideas with other people.

Serving other testers. Performing services that support other testers on their own terms.

Guiding other testers. Supervising testers who support your explorations; coaching testers.

Asking for help. Articulating your needs; negotiating for assistance.

Role visiting. Where feasible and applicable, spending time performing non-testing roles that may give you

perspective or practice that makes you a better tester.

Telling the story of your testing. Making a credible, professional report of your work to your clients in

oral and written form that explains and justifies what you did.

Telling the product story. Making a credible, relevant account of the status of the product you are

studying, including bugs found. This is the ultimate goal for most test projects.

Learning Skills and Tactics

Discovering and developing resources. Obtaining information or facilities to support your effort.

Exploring those resources.

Using the Web. Of course, there are many ways to perform research on the Internet. But, acquiring the

technical information you need often begins with Google or Wikipedia.

Considering history. Reviewing what’s been done before and mining that resource for better ideas.

Reading and analyzing documents. Reading carefully and analyzing the logic and ideas within

documents that pertain to your subject.

Interviewing. Identifying missing information, conceiving of questions, and asking questions in a way that

elicits the information you seek.

Pursuing an inquiry. A line of inquiry is a structure that organizes reading, questioning, conversation,

testing, or any other information gathering tactic. It is investigation oriented around a specific goal. Many

lines of inquiry may be served during exploration. This is, in a sense, the opposite of practicing curiosity.

Indulging curiosity. Curiosity is investigation oriented around this general goal: to learn something that

might be useful, at some later time. This is, in a sense, the opposite of pursuing a line of inquiry.

Generating and elaborating a requisite variety of ideas. Working quickly in a manner good enough

for the circumstances. Revisiting the solution later to extend, refine, refactor or correct it.

Overproducing ideas for better selection. Producing many different speculative ideas and making

speculative experiments, more than you can elaborate upon in the time you have. Examples are

brainstorming, trial and error, genetic algorithms, free market dynamics.

Abandoning ideas for faster progress. Letting go of some ideas in order to focus and make progress

with other ones.

Recovering or reusing ideas for better economy. Revisiting your old ideas, models, questions or

conjectures; or discovering them already made by someone else.

26

Test Performance Skills and Tactics

Encountering the product. Making and managing contact with the subject of your study; for technology,

configuring and operating it so that it demonstrates what it can do.

Sensemaking. Determining the meaning and significance of what you encounter; considering multiple,

incompatible explanations that account for the same facts; inference to the best explanation.

Modeling and factoring. Modeling means composing, decomposing, describing, and working with mental

representations of the things you are exploring; factoring means identifying relevant dimensions, variables,

and dynamics that should be tested. There are lots of formal modeling methods, as well.

Analyzing product risk. Using experiential data, conversation, and heuristics, identify suspected product

risks that deserve to be investigated with testing.

Experiment design. As you develop ideas about what’s going on, creating and performing tests designed

to disconfirm those beliefs, rather than repeating the tests that merely confirm them.

Literate observation. Making relevant observations guided by your various mental models; gathering

different kinds of empirical data, or data about different aspects of the object; establishing procedures for

rigorous observations; noticing strange things; noticing what you are not seeing.

Detecting potential problems. Designing and applying oracles to detect behaviors and attributes that

may be trouble.

Assessing validity. Analyzing, monitoring, and correcting for factors that may distort or invalidate the

tests.

Notetaking. Recording observations, ideas, and progress as you test; recording useful information without

unduly disturbing the test process itself.

Data wrangling. Synthesizing, modifying, moving, and reformatting test data.

Bug reporting and advocacy. Explaining problems in a compelling and respectful way.

Applying tools. Enabling new kinds of work or improving existing work by developing and deploying

tools.

Testability advocacy. Analyzing and negotiating for the conditions that make testing easier and more

effective.

Protocol design. Creating and following procedures and practices that increase the reliability of the test

process.

Lab management. Creating and maintaining the systems, tools, databases, and spaces that you need to test

well.

27

Knowledge that Helps

In addition to the skills and tactics of testing, there’s lots of things we might need to know.

 Product Knowledge. What does your product do and how does it work?

 Technology Knowledge. What technology is your product built from? What other technologies can help

you test it?

 Project Knowledge. What’s going on in your project? What’s the schedule? Who is working on it?

 Domain Knowledge. Who are the users? How do they think? What sort of process does your product

support?

 General systems knowledge. This refers to the whole field of general systems theory and systems

thinking. In short, it consists of the heuristics and know-how about how dynamic systems behave.

 Tool Knowledge. Physical or software-based tools that can help testing. This does not only mean tools that

are called “test tools” but rather ANY tool that may help ANY aspect of the test process.

 Test Technique Knowledge. There are many kinds of testing; many specific testing heuristics you might

use.

 Resource Knowledge. In addition to things that you think of as tools, you need to be aware of any

resource (i.e. facility, material, or service) that is available to help you get the job done.

 People Knowledge. Who can help you? What skills do they have that you need? How do you approach

them? How specifically might they contribute to the test project?

 Role Knowledge. What do the other people do who make the project work? How does their work impact

yours? How might knowing more about their roles help you do your job better? How do you serve them as a

tester?

 History Knowledge. What is the history of this project? This product line? The market? This company?

What trouble has happened in the past that we don’t want repeated?

 Business and Market Knowledge. Who are your competitors? What are those competing products? Are

there similar or complementary products as well? How does quality affect your bottom line?

Helpful Skills Some Testers Have

In addition to the defining skills of testing, there are other skills and knowledge areas that testers may have.

 Coding Skill. In some companies, coding skills are a requirement. In general, the ability to build your own

tools brings great power to testing. However, people with coding skills may also think too much like coders

and lose empathy for users.

 Design Skill. Product design, and especially user interface design, can help sharpen your bug reports and

improve your bug detection ability.

 Social Science Skills. The social sciences are about studying extremely complex, socially situated

phenomena. The analytical methods and standards of social science helps testers better understand the limits

of software testing and to better study and improve testing processes.

 Specification Writing Skills. Sometimes it helps for testers to help write specifications, or to suggest

rewrites. Writing a spec is one great way of preparing to design tests for that product.

 Mathematics and Logic Skills. Statistics, combinatorics, and formal logic are often useful to design deep

tests and characterize test coverage.

 Cognitive Science Skills. If you understand the patterns and limitations of human perception, you can

better appreciate how to avoid common pitfalls of self-deception, and to design test procedures that are more

reliable.

28

Exploratory Polarities

To develop ideas or search a complex space quickly yet thoroughly, not only must you look at the world from many

points of view and perform many kinds of activities (which may be polar opposites), but your mind may get sharper

from the very act of switching from one kind of activity to another. Here is a partial list of polarities:

 Warming up vs. cruising vs. cooling down

 Doing vs. describing

 Doing vs. thinking

 Deliberate vs. spontaneous

 Data gathering vs. data analysis

 Working with the product vs. reading about the product

 Working with the product vs. working with the developer

 Training (or learning) vs. performing

 Product focus vs. project focus

 Solo work vs. team effort

 Your ideas vs. other peoples’ ideas

 Lab conditions vs. field conditions

 Current version vs. old versions

 Feature vs. feature

 Requirement vs. requirement

 Coverage vs. oracles

 Testing vs. touring

 Individual tests vs. general lab procedures and infrastructure

 Testing vs. resting

 Playful vs. serious

29

Test Strategy

This is a compressed version of the Satisfice Heuristic Test Strategy model. It’s a set of

considerations designed to help you test robustly or evaluate someone else’s testing.

Project Environment
❑ Mission. The problems you are commissioned to solve for your customer.

❑ Information. Information about the product or project that is needed for testing.

❑ Developer Relations. How you get along with the programmers.

❑ Test Team. Anyone who will perform or support testing.

❑ Equipment & Tools. Hardware, software, or documents required to administer testing.

❑ Schedules. The sequence, duration, and synchronization of project events.

❑ Test Items. The product to be tested.

❑ Deliverables. The observable products of the test project.

Product Elements
❑ Structure. Everything that comprises the physical product.

❑ Functions. Everything that the product does.

❑ Data. Everything that the product processes.

❑ Interfaces. Every conduit by which the product is accessed or expressed.

❑ Platform. Everything on which the product depends (and that is outside your project).

❑ Operations. How the product will be used.

❑ Time. Any relationship between the product and time.

Quality Criteria Categories
❑ Capability. Can it perform the required functions?

❑ Reliability. Will it work well and resist failure in all required situations?

❑ Usability. How easy is it for a real user to use the product?

❑ Charisma. How appealing is the product?

❑ Security. How well is the product protected against unauthorized use or intrusion?

❑ Scalability. How well does the deployment of the product scale up or down?

❑ Compatibility. How well does it work with external components & configurations?

❑ Performance. How speedy and responsive is it?

❑ Installability. How easily can it be installed onto it target platform?

❑ Development. How well can we create, test, and modify it?

General Test Techniques
❑ Function Testing. Test what it can do.

❑ Domain Testing. Divide and conquer the data.

❑ Stress Testing. Overwhelm the product.

❑ Flow Testing. Do one thing after another.

❑ Scenario Testing. Test to a compelling story.

❑ Claims Testing. Verify every claim.

❑ User Testing. Involve the users.

❑ Risk Testing. Imagine a problem, then find it.

❑ Automatic Checking. Write a program to generate and run a zillion checks.

30

The Role/Actor Heuristic (v1.1)
Dimensions of Role

Dimension Typical Problems Typical Remedies
Scope (what the role covers)
 Responsibilities
 What depends on it
 What it depends on

 Role too big for actor; tasks get lost
 Big role shared by many actors who

fight each other

 Bring more actors in to share role
 Break up big role into smaller roles
 Create manager role

Power (what the role influences)
 Authority/Sponsorship
 What roles control it
 What roles it controls

 Powerful role leaves others without
enough power

 Weak role can’t get what it needs
 Weak role controlled by strong role

that doesn’t understand it

 Break up big role into smaller roles
 Redistribute power
 Attach weak role to stronger roles
 Strengthen role via stronger actor
 Educate controlling roles
 Create manager role

Value (what the role does for people)
 Specific problems solved
 Necessity to organization
 Desirability to others
 Prestige for actor
 New problems created

 Role is not important enough; wastes
time and effort

 Role creates too much trouble
 Role is unpopular and is undermined
 Role is thankless and no one wants it
 Role ruined by bad actors

 Ritualize or eliminate role
 Increase power of role
 Get better actors
 Use “role model” as actor

Cost (what the role takes from people)
 Cost of the actor, equipment, and

materials
 Cost to accommodate the role
 Cost due to other roles becoming

complacent

 Role is too expensive
 Role makes costs uncomfortably public
 Existence of a role causes others to

“leave it to the expert” and lose skill.
 Necessity to accommodate the role

disrupts other roles

 Eliminate role in order to hide cost
 Hire highly skilled actors
 Hire extremely inexpensive actors
 Promote the value of the role to show

that costs are justified

Requirements (what role/actor needs)
 Environment & tools
 Skills & knowledge
 Motivation
 Outside support

 Requirements are too hard to fulfill
 Qualified actors are too hard to recruit
 Weak role can’t get what it needs

 Make do with less and communicate
impact to sponsor

 Offer training and coaching
 Increase prestige of role
 Ritualize or eliminate role

Openness (how actors relate to it)

 Ownership & commitment
 Casual shareability
 Informality
 Interruptability
 Simplicity
 Legibility

 Role is highly territorial
 Role is easily disrupted by helpers
 Role is difficult to adopt
 Role is difficult to let go of
 Role is mysterious and opaque
 Role too reliant on specific actors
 Role is a tragic commons

 Ritualize or eliminate role
 Offer training and coaching
 Strengthen role
 Make strong agreements with actors
 Close the role to outsiders
 Formalize to improve legibility

Presence (when & where it operates)

 Persistence
 Responsiveness
 Disruptiveness

 Response is too slow
 When role goes away and later comes

back, people forget many details
 Role slows down other roles

 Add more actors to speed it up
 Good documentation to preserve

history
 Ritualize or eliminate the role

Expectations of Actors
Expectation Typical Problems Typical Remedies

Commitment (acceptance of duty)
 Investment of energy
 Accountability

 Conflict of commitment between projects
 It may not be clear who to blame
 There may be many causes for a problem

 Do fewer projects
 Persuade people to commit
 Management must watch and listen

Competence (ability to perform)
 Study and practice
 Self-evaluation

 No training available
 Training is actively harmful
 Dunning-Krueger syndrome

 On-the-job coaching
 Personal ambition
 Fake it and hope no one fires you

Readiness (operational status)
 Anticipating events
 Adapting to new conditions
 Maintaining efficiency
 Troubleshooting

 Chronically unanticipated obstacles
 Black swan obstacle
 Another role spoils your plans

 Hire a competent actor
 Use a checklist or guideword

heuristics
 Readiness review
 Increase power of role

Coordination (relating to other roles)
 Mission negotiation
 Resource negotiation
 Helping and accepting help
 Respecting agreements
 Failover strategy
 Status reporting
 Delivery

 Goal displacement
 Forgotten agreements
 Partial delivery
 Fail to justify need for resources
 Poor credibility in negotiation

 Good meetings
 Use a checklist or guideword

heuristics
 Use a map of dependencies
 Better sponsorship
 Increase power of role

31

 32

Heuristics of Software Testability

Version 2.5, 2021, by James Bach, Satisfice, Inc.

The practical testability of a product is how easy it is to test* by a particular tester and test process, in a given con-

text†. Practical testability is a function of five other “testabilities:” project-related testability, value-related testability,
subjective testability, intrinsic testability, and epistemic testability (also known as the “risk gap”). Just as in the case
for quality in general, testability is a plastic and multi-dimensional concept that cannot be usefully expressed in any
single metric. But we can identify testability problems and heuristics for improving testability in general.

Interesting Testability Dynamics

Changing the product or raising the quality standard reduces epistemic testability. The difference between what we
know and what we need to know is why we test in the first place. A product is easier to test if we already know a lot
about its quality or if the quality standard is low, because there isn’t much left for testing to do. That’s epistemic test-
ability. Therefore product that changes a lot or in which we can’t tolerate trouble is automatically less testable.

Improving any other aspect of testability increases the rate of improvement of epistemic testability. Efforts made to
improve any other aspect of testability, by definition, increases the rate at which the gap between what we know and
what we need to know closes.

Improving test strategy might decrease subjective testability or vice versa. This may happen when we realize that our
existing way of testing, although easy to perform, is not working. A better test strategy, however, may require much
more effort and skill. (Ignorance was bliss.) Beware that the opposite may also occur. We might make a change (add-
ing a tool for instance) that makes testing seem easier, when in fact the testing is worse. (Bliss may be ignorant.)

* Testing is evaluating a product by learning about it through experiencing, exploring, and experimenting.
† Context is all of the factors a situation that should be considered when solving a situated problem.

33

Increasing intrinsic testability might decrease project-related testability. This may happen if redesigning a product to
make it more testable also introduces many new bugs. Or it may happen because the developers spend longer stabi-
lizing the product before letting independent testers see it. Agile development done well helps minimize this prob-
lem.

Increasing value-related testability might decrease project testability. Better contact with users and stakeholders, and
improved oracles and knowledge of requirements may lead to the need for profound re-design and re-testing if it
happens late in a project cycle. Agile helps with this problem, too.

Increasing practical testability also improves development and maintenance. If a product is easier to test then it is also
easier to support, debug, and evolve. Observability and controllability, for instance, is a tide that floats all boats.

The tester must ask for testability. We cannot expect any non-tester to seriously consider testability. It’s nice when
they do, but don’t count on it. An excellent tester learns to spot testability issues and resolve them with the team.

Guidewords for Analyzing Testability

Epistemic Testability

• Prior Knowledge of Quality. If we already know a lot about a product, we don’t need to do as much testing.

• Tolerance for Failure. The less quality required, or the more risk that can be taken, the less testing is needed.

Project-Related Testability

• Developer Availabilty: The ability to speak with and perhaps influence developers/designers/managers
makes a nurturing environment for testing.

• Change Control. Frequent and disruptive change requires retesting and invalidates our existing product
knowledge. Change control generally improves testability, but can also hurt it if we aren’t allowed to update
our test environments, tools, and data. Change control may occur on a local or corporate level.

• Information Availability. We get all information we want or need to test well.

• Tool Availability. We are provided all tools we want or need to test well.

• Test Item Availability. We can access and interact with all relevant versions of the product.

• Sandboxing. We are free to do any testing worth doing (perhaps including mutation or destructive testing),
without fear of disrupting users, other testers, or the development process.

• Environmental Controllability. We can control all potentially relevant experimental variables in the environ-
ment surrounding our tests.

• Time. Having too little time destroys testability. We require time to think, prepare, and cope with surprises.

• Leanness. Complexity and magnitude of work products, accumulated over time, must be navigated or main-
tained to get the testing done. Also, complicated bureaucratic processes reduce time available for tsting.
Avoid technical debt and administrative overhead.

Value-Related Testability

• Oracle Availability. We need ways to detect each kind of problem. A well-written specification is one example
of such an oracle, but there are lots of other kinds of oracles (including people and tools).

• Oracle Authority. We benefit from oracles that identify problems that will be considered important.

• Oracle Reliability. We benefit from oracles that can be trusted to work over time and in many conditions.

• Oracle Precision. We benefit from oracles that facilitate identification of specific problems.

• Oracle Inexpensiveness. We benefit from oracles that don’t require much cost or effort to acquire or operate.

• User Stability & Unity. The less users change and the more harmony among them, the easier the testing.

• User Familiarity. The more we understand and identify with users, the easier it is to test for them.

• User Availability. The more we can talk to and observe users, the easier it is to test for them.

• User Data Availability. The more access we have to natural data, the easier it is to test.

34

• User Environment Availability. Access to natural usage environments improves testing.

• User Environment Stability & Unity. The less user environments and platforms change and the fewer of them
there are, the easier it is to test.

Subjective Testability
• Product Knowledge. Knowing a lot about the product, including how it works internally, profoundly im-

proves our ability to test it. If we don't know about the product, testing with an exploratory approach helps
us to learn rapidly.

• Technical Knowledge. Ability to program, knowledge of underlying technology and applicable tools, and an
understanding of the dynamics of software development generally, though not in every sense, makes testing
easier for us.

• Domain Knowledge. The more we know about the users and their problems, the better we can test.

• Testing Skill. Our ability to test in general obviously makes testing easier. Relevant aspects of testing skill
include experiment design, modeling, product element factoring, critical thinking, and test framing.

• Engagement. Testing is easier when a tester is closer to the development process, communicating and col-
laborating well with the rest of the team. When testers are held away from development, test efficiency suf-
fers terribly.

• Helpers. Testing is easier when we have help. A “helper” is anyone who does not consider himself responsi-
ble for testing the product, and yet does testing or performs some useful service for the responsible testers.

• Test Strategy. A well-designed test strategy may profoundly reduce the cost and effort of testing.

Intrinsic Testability
• Observability. To test we must be able to see the product. Ideally we want a completely transparent product,

where every fact about its states and behavior, including the history of those facts is readily available to us.

• Controllability. To test, we must be able to visit the behavior of the product. Ideally we can provide any pos-
sible input and invoke any possible state, combination of states, or sequence of states on demand, easily and
immediately.

• Algorithmic Simplicity. To test, we must be able to visit and assess the relationships between inputs and out-
puts. The more complex and sensitive the behavior of the product, the more we will need to look at.

• Explainability. To test, we must understand the design of the product as much as we can. A product that behaves in

a manner that is explainable to outsiders is going to be easier to test. “Explainability” is also a hot topic in AI.

• Unbugginess. Bugs slow down testing because we must stop and report them, or work around them, or in the
case of blocking bugs, wait until they get fixed. It’s easiest to test when there are no bugs.

• Smallness. The less there is of a product, the less we have to look at and the less chance of bugs due to inter-
actions among product components.

• Decomposability. When different parts of a product can be separated from each other, we have an easier
time focusing our testing, investigating bugs, and retesting after changes.

• Similarity (to known and trusted technology). The more a product is like other products we already know the
easier it is to test it. If the product shares substantial code with a trusted product, or is based on a trusted
framework, that’s especially good.

35

 36

Heuristics for Evaluating Testing Tools

Created by James Bach and Michael Bolton v0.9 Copyright Satisfice, Inc. September, 2021

In one sense, evaluating a test tool is like evaluating any other software product; there are common
notions of quality criteria, models for covering the product with testing, and techniques to apply. Those
can be found in the Heuristic Test Strategy Model1. In this document, we’ll present some special
considerations that you may want to apply to evaluating tools focused on and marketed towards testing.

In this document, “tool” will refer to a piece of software or a suite that is intended to aid you in testing.
“Product” will refer to the product under test.

Capabilities and Power
 Features and algorithms. What does the tool actually do, and how does it do it? Do the tool and

its documentation make those things reasonably clear and transparent? How does the tool help
you find problems in your product?

 Performance and reliability at scale. Can the tool handle all the data and all of the operations
you throw at it from a full-blown project? Is it stable? Does it recover gracefully from failure?

 Logging and reporting. Are there usable, parseable output logs from the tool? Can you easily
discover what the tool actually did, after it did it, so that you can debug its behaviour? Have you
reviewed the reports it can produce?

 Multi-user / social features. How would this tool enable a team of testers to work together
collaboratively, either locally or off-site? Are there commenting or voting or chat features?

 Modeling and Test Design Support. Does the tool assist you in analyzing and modeling the
product, then creating tests from those models? Can it help you with special forms of test design
such as combinatorial testing, state-based testing, data flow testing, etc.?

 Test Oracles. In what ways can it help you detect real bugs? What sort of verification methods or
parameters does it allow you to use?

 Creating and wrangling data. Can the tool help you to generate data? To vary it in useful ways?
To store and curate it? Does it help you import and reformat large data sets?

 Support for data-driven testing. Can you connect tables, files, or databases to the same
procedure to perform many interesting variations of that test?

 Modifying and extending test procedures. Can the flow of a task be easily edited and adapted to
fit new or revised functions and features in your product? Can coders get under the hood and
modify test behaviour easily—in non-proprietary and reasonably common programming
languages?

 Version control and history. Does the tool allow you to put test artifacts under version control?
Does the tool allow you to examine the history of each artifact? Can earlier versions of each
artifact be recovered as needed? Does it autosave?

 Coverage analysis and traceability. Does the tool help you understand what has been covered?
Can its coverage reports be exported?

 Instrumentation. Does the tool help you to probe or monitor elements of your product that
might be hard to detect or analyze via experiential testing alone?

1 https://www.satisfice.com/download/heuristic-test-strategy-model

37

Effort to Operate
 Test design and development. How hard is it to create real tests? How hard is it to build suites of

related tests without too much duplication?
 Test repair and maintenance. Can procedures or data be reviewed and changed easily if change

is needed? What happens when trivial changes to the product invalidate a lot of tests?
 Monitor and analyzing tool behaviour. Can you tell what the tool did? Does it provide you with

enough data to investigate bugs?
 Interoperation with other tools. Does the tool play well with other tools you use? Does it work

with your pipeline?
 Mass editing. Sometimes you need to make little changes in a lot of test artifacts. What facilities

does the tool have for doing so?
 Administrative features. Have you reviewed the user management and settings features? What

if testers leave or move around the organization? Are you able to reassign their work?

Feasibility of Adoption

 Availability of users. Are there willing and ready users for the product? Do they have skills
necessary to use the tool? Will they need coding skill? Will the tool be welcomed by people who
want to do serious testing? Will users feel coerced into using it?

 Adoption curve. Can you incrementally evaluate and adopt the tool, or will it force you to jump
in all at once?

 Flexibility and configurability. Can the tool be adapted quickly and easily to fit your product,
your workflow, and your culture?

 Compatibility with product technology. Does it support the platforms necessary to your
product? Is it portable to new ones that you may adopt later on?

 Compatibility with current test processes and tools. Does the tool support your development
setup? Does the tool support your current models of testing? Might it influence them in
productive or not-so-productive ways?

 Hosting / availability / data security. Where is the tool’s data kept? Are privacy rules being
maintained? Is your testing being used to train someone else’s machine learning model?

 Adoption and provisioning costs. Tools often come with hidden costs of getting started related
to learning, training, data migration, equipment, and infrastructure. Not all of those costs may be
monetary or technological; there may be psychological and social costs as well.

 Offboarding cost (in case we bail out) You need to know how to abandon the tool if that
becomes necessary.

Learning, Troubleshooting, and Support

 Transparency and simplicity. Do the design and documentation of the tool allow you to know
what it can and can’t do? Beware of magic, proprietary algorithms that claim to test everything.

 Reference documentation. Are there rich, detailed references available for each feature in the
tool? Does the documentation provide examples? Is there a troubleshooting guide?

 Tutorial documentation. Have you been through the tutorial?
 Community of users. How active is the user community? Will it be able to help you?
 Availability of training. Is there training available for the tool?
 Availability of consulting. Is there a marketplace where you can hire help if you need it?
 Availability of technical support. How well does the vendor’s own technical support work?
 Responsiveness to bug reports. It’s hard to know this except later—but will the vendor take your

bug reports seriously and fix the problems you might complain about?

38

Common Syndromes to Beware

 The 20/80 Rule. Most tools seem to focus on 20% of the testing problem that is easy to solve, as
long as you devote 80% of your time and energy to operating their tool—leaving you 20% of your
time accomplish the remaining 80% of the work.

 Tools that discourage you from experiencing your own product. Automated checking at the GUI
level tends to discourage testers and teams from actually using their own product as part of
testing it (i.e. experiential testing). This means you will miss bugs that can’t be found with an
automated oracle.

 Claims of increased efficiency. When a vendor claims to reduce testing time by any specific
percentage, that should have no meaning to you. Whatever meaning it might have, you can’t
know without detailed explanation, but it will be based on some claim about your testing which
they can’t possibly know is true. Are efficiency gains comparing your oranges to the vendor’s
apples, or to someone else’s rotten apples?

 Claims without evidence. Some vendors hide their claims behind a demo wall, neither showing
you the tool in action nor describing it in detail. Instead, the pitch is expressed in terms of word
magic. Step right up!

 Executive-only demos. Tool salespeople love showing tools to people who don’t actually do the
work, and who aren’t disposed to be critical of the claims and the demonstration. Make sure the
people doing the work are in the room, and that they’re asking challenging questions.

 Sunk cost bias. When a tool has become entrenched in your process, it may be hard for you to
abandon it. When a tool has become entrenched in the organization’s culture and it is expensive,
it may be very hard to convince management to abandon it.

 Deprecating deep testing. Deep testing tends to take time; effort; determination; preparation;
rich and varied data; a requisite variety of activities. Beware of tools that undermine any of those
things and that direct you toward shallower testing.

 Claims of “AI”. Much of the time, “AI” is just a synonym for “software”. But someone claims that
the tool uses or apply machine learning, how does the training data used to create the ML model
relate to your product or data? It’s possible that AI can be helpful, but it cannot make qualitative
evaluations of the software, and it cannot be responsible. Do not rely on “AI”.

 Procrustean Tools. It is common for vendors to force you to use their vocabulary and theories of
testing when you adopt their tools. This may lead to systematically alienated and demoralized
testers.

 What kind of testing will it NOT support? No tool does everything you might need to do.
 What kinds of bugs will it NOT help you to find? No tool or technology can help you to find

every bug. On the other hand, respect vendors who frame expectations in reasonable ways.

39

 40

Risk Analysis Heuristics (for Digital Products)

By James Bach and Michael Bolton v. 2.1
Copyright © Satisfice, Inc. 2000-2015

This is a set of guideword heuristics for use in analyzing product risks for digital products, mainly
software. “Guidewords” are words or phrases that help focus your attention on potentially
important factors. Guidewords are not mutually exclusive—they interact and overlap to some
degree. But that’s okay. In heuristic risk analysis we do not use mathematics to calculate risk,
however if many of these guidewords seems to apply to a particular component of your product,
you will probably consider that part more likely to harbor serious bugs, and more worth testing.

Project Factors
Things going on in projects, among people, may lead to bugs.

Learning Curve: When developers are new to a tool, technology, or solution domain, they are likely to
make mistakes. Many of those mistakes they will be unable to detect.

Poor Control: Code and other artifacts may not be under sufficient scrutiny or change control, allowing
mistakes to be made and to persist. Also people may try to subvert weak controls when they perceive
themselves to be under time pressure.

Rushed Work: The amount of work exceeds the time available to do it comfortably. Corners are likely to
be cut; details are likely to be forgotten.

Fatigue: Programmers and other members of the development team are more likely to make mistakes
when they're physically tired or even just bored.

Overfamiliarity: When people are immersed in a project or a community for an extended time, they
may become blind to patterns of risks or problems that are easy for an outsider to see.

Distributed Team: When people are working remotely from each other, communication may become
strained and difficult, simple collaborations become expensive, the conditions for the exchange of tacit
knowledge are inhibited.

Third-party Contributions: Any part of a product contributed by a third-party vendor may contain
hidden features and bugs, and the developers may otherwise not fully understand it.

Bad Tools: The project team may be saddled with tools that interfere with or constrain their work; or
that may introduce bugs directly into their work.

Expense of Fixes: Some components or type of bugs may be especially expensive to fix, or take a long
time to fix (platform bugs are typically like this). In that case, you may need to focus on finding those
bugs especially soon.

Not Yet Tested: Any part of the product that hasn't yet been tested is obviously likely to have fresh bugs
in it, compared to things that have been tested. Therefore, for instance, it may be better to focus on
parts of the product that have not been unit tested.

41

Technology Factors
The structure and dynamics of technology itself may give rise to bugs.

New Technology: Over time, the risks associated with any new kind of technology will become
apparent, so if your product uses the latest whizzy concept, it is more likely to have important and
unknown bugs in it.

New Code: The newer the code you are testing, the more likely it is to have unknown problems.

Old Code: A product that has been around for a while may contain code that is unsuited to its current
context, difficult to understand, or hard to modify.

Changed Code: Any recently changed code is more likely to have unknown problems.

Brittle Code: Some code may be written in a way that makes it difficult to change without introducing
new problems. Even if this code never changes, it may be brittle in the sense that it tends to break when
anything around it changes.

Complexity: The more different interacting elements a product has, the more ways it can fail; the more
states or state transitions it has, the more states can be wrong.

Failure History: The more that a product or part of a product has failed in the past, the more you might
expect it to fail in the future. Also, if a particular product has failed in a particularly embarrassing way, it
perhaps should not be allowed to fail in that way again without bring the project team into disrepute.

Dependencies Upstream: One part of a system or one feature of a product may depend on data or
conditions that are controlled by other components that come before it. The more upstream processing
that must occur correctly, the more likely that any bugs in those processes may cause failure in the
downstream component.

Dependencies Downstream: Any particular component that has many other components that rely on it
will involve more risk, because the upstream bugs will propagate trouble downstream.

Distributed Components: A product may be comprised of things that spread out over a large area,
connected by tenuous network links that introduce uncertainty, noise, or lag time into the system.

Open-Ended Input: The greater freedom there is in data, the more likely that a particular configuration
of data could trigger a bug. Lack of filtering and bounding are especially a problem for security.

Hard to Test: When something is hard to test, perhaps because it is hard to observe or hard to control,
there will be greater risk that bugs will go undetected, and it will require extra effort to find the
important bugs.

Hardware: Hardware components can’t be changed easily. Hardware related problems must be found
early because of the long lead time for fixing.

42

Requirements Factors
Aspects of requirements may indicate or promote the presence of bugs.

Ambiguity: Words and diagrams are always interpreted by people, and different people will often have
different interpretations of things. More ambiguity means more likelihood that a bug can be introduced
through honest misunderstanding.

Very High Precision: Sometimes a document will specify a higher level of precision than is necessary or
achievable. Sometimes the product should behave in a way that is more precise than the specification
suggests. In any case, higher the precision required, the more likely it is that the product will not meet
that requirement.

Mysterious Silence: Sometimes a specification will leave out things that a tester might think are
essential or important. This "mysterious" silence might indicate that the designers are not thinking
enough about those aspects of the design, and therefore there are perhaps more bugs in it. This is
commonly seen with error handling.

Undecided Requirements: The designers might have intentionally left parts of the product unspecified
because they don’t yet know how it should work. Postponing the design of a system is a normal part of
Agile development, for instance, but wherever that happens there is a possibility that a big problem will
be hiding in those unknown details.

Evolving Requirements: Requirements are not static, they are changed and developed and extended.
Any document is a representation of what some person believed at some time in the past; and when
when a requirement is updated, it's possible that other requirements which SHOULD have changed,
didn't. Fast evolving requirements often develop inconsistencies and contradictions that lead to bugs.

Imported Requirements: Sometimes requirement statements are "borrowed"— cut and pasted from
other documents or even from other projects. These may include elements not appropriate to the
current project.

Hard to Read: If the document is large, poorly formatted, repetitive, or otherwise hard to read, it is less
likely to have been carefully written or properly reviewed.

Non-Native Writers: When the person writing the specification is not fluent in the specification's
language, misunderstanding and error are likely.

Non-Native Readers: When the people reading and interpreting the specification are not fluent in the
specification's language, misinterpretation is likely.

Critical Feature: The more important a feature is, the more important its bugs will be.

Strategic Feature: A feature might be key to differentiating your product from a competitor; or might
have a special notoriety that would make its bugs especially important.

VIP Opinion: A particular important person might be paying attention to a particular feature or
configuration or type of use, making bugs in that area more important. Or the important person's
fascination with one aspect of the product may divert needed attention from other parts of the product.

43

Operational Factors
The circumstances and patterns of use affect the probability and impact of bugs.

Popular Feature: The more people use a feature, the more likely any bugs in it will be found by users.

Disconnection: Different parts of a product that must work together may fall into incompatible states,
leading to a failure of the system as a whole.

Unreliable Platform: Deployed products may exhibit problems due to variations or failures in the
underlying supporting technology.

Security Threats: Malicious actors will attempt to break in.

Misusable: A feature might be easily misused, such that it might misbehave in a way that while not
technically a flaw in the design, is still effectively a bug.

Glaring Failure: A problem or its consequences may be obvious to anyone who encounters it.

Insidious Failure: The causes or symptoms of a problem may be invisible or difficult to see for some time
before they are noticed, allowing more trouble to build.

44

Copyright 1997-2007, Satisfice, Inc.

James Bach, Satisfice, Inc.
v1.24 11/3/2002 11:07 AM
james@satisfice.com, http://www.satisfice.com

Is the Product Good Enough?
A Heuristic Framework for Thinking Clearly About Quality

GEQ Perspectives

1. Stakeholders: Whose opinion about quality matters? (e.g. project team, customers, trade press, courts of law)
2. Mission: What do we have to achieve?(e.g. immediate survival, market share, customer satisfaction)
3. Time Frame: How might quality vary with time?(e.g. now, near-term, long-term, after critical events)
4. Alternatives: How does this product compare to alternatives, such as competing products, services, or solutions?
5. Consequences of Failure: What if quality is a bit worse than good enough? Do we have a contingency plan?
6. Ethics: Would our standard of quality seem unfairly or negligently low to a reasonable observer?
7. Quality of Assessment: How confident are we in our assessment? Do we know enough about this product?

GEQ Factors

1. Assess the benefits of the product:

1.1 Identification: What are the benefits or potential benefits for stakeholders of the product?
1.2 Likelihood: Assuming the product works as designed, how likely are stakeholders to realize each benefit?
1.3 Impact: How desirable is each benefit to stakeholders?
1.4 Individual Criticality: Which benefits, all by themselves, are indispensable?
1.5 Overall Benefit: Taken as a whole, and assuming no problems, are there sufficient benefits for stakeholders?

2. Assess the problems of the product:

2.1 Identification: What are the problems or potential problems for stakeholders of the product?
2.2 Likelihood: How likely are stakeholders to experience each problem?
2.3 Impact: How damaging is each problem to stakeholders? Are there workarounds?
2.4 Individual Criticality: Which problems, all by themselves, are unacceptable?
2.5 Overall Impact: How do all the problems add up? Are there too many non-critical problems?

3. Assess product quality:

3.1 Overall Quality: With respect to the GEQ Perspectives, do the benefits outweigh the problems?
3.2 Margin of Safety/Excellence: Do benefits to outweigh problems to a sufficient degree for comfort?

4. Assess our capability to improve the product:

4.1 Strategies: Do we know how the product could be noticeably improved?
4.2 People & Tools: Do we have the right people and tools to implement those strategies?
4.3 Costs: How much cost or trouble will improvement entail? Is that the best use of resources?
4.4 Schedule: Can we ship now and improve later? Can we achieve improvement in an acceptable time frame?
4.5 Benefits: How specifically will it improve? Are there any side benefits to improving it (e.g. better morale)?
4.6 Problems: How might improvement backfire (e.g. introduce bugs, hurt morale, starve other projects)?

In the present situation, all things considered, is it more harmful than
helpful to further improve the product?

45

Copyright 1997-2007, Satisfice, Inc.

About this Framework

This analysis framework represents one of many ways to reason about Good Enough quality. It’s based on this assertion:

A product is good enough when all of these conditions apply:

1. It has sufficient benefits.
2. It has no critical problems.
3. The benefits sufficiently outweigh the problems.
4. In the present situation, and all things considered, further improvement

would be more harmful than helpful.

Each point, here, is critical. If any one of them is not satisfied, then the product, although perhaps good, cannot be good enough. The first
two seem fairly obvious, but notice that they are not exact opposites of each other. The complete absence of problems cannot guarantee
infinite benefits, nor can infinite benefits guarantee the absence of problems. Benefits and problems do offset each other, but it’s important to
consider the product from both perspectives. Point #3 reminds us that benefits must not merely outweigh problems, they must do so to a
sufficient degree. It also reminds us that even in the absence of any individual critical problem, there may be patterns of non-critical
problems that essentially negate the benefits of the product. Finally, point #4 introduces the important matter of logistics and side effects. If
high quality is too expensive to achieve, or achieving it would cause other unacceptable problems, then we either have to accept lower
quality as being good enough or we have to accept that a good enough product is impossible.

The analysis framework (p. 1) is a more detailed expression of the basic Good Enough model. It is meant to jog your mind about every
important aspect of the problem. To apply it, think upon each of the GEQ Factors in light of each of the GEQ Perspectives. This process can
be helpful in several ways:

1. Use it to make a solid argument in favor of further improvement. For instance, you might apply the stakeholder and critical
purpose perspectives to support an argument that a particular packaged software product under development, while possessing cool features
that will please enthusiasts, does not possess certain benefits that mainstream customers require (e.g. convenient data interchange with
Microsoft Office). Mainstream customers may also require higher reliability.

2. Use it to explore how to invest now to support higher standards later. If you know at the beginning of a project that there
will be tough quality decisions to make at the end, you can work to assure that the quality bar will be set high. Looking at the framework,
you can see that by lowering the cost of improvement, it may be less of a burden and can go on longer. Preventing problems could cause
higher quality to be attainable in the same time frame.

3. Use it to form your own notion of acceptable quality. There’s nothing sacred about this framework. It’s a work in progress.
Hold your idea of quality as clearly as you can in your mind’s eye, then run through the framework and see if you find any of the questions
jarring or unnecessary. Try to trace the source of your discomfort. Do you prefer different terminology? A model that more closely fits your
technology or market? Are there any missing questions?

Why “Good Enough?”

Software quality assessment is a hard problem. Although there are many interesting measurable quality factors, there is no conceivable
single measure that represents all that we mean by the word quality. Since quality is multidimensional and ultimately a subjective idea, a
responsible and accurate perception of it must be constructed in our minds from all the facts and perceptions. It’s a cognitive process akin to
analyzing the stock market, or handicapping racehorses.

When it comes to maximizing software quality, we have another hard problem-- how good is good enough? Quality is not free, we have to
exert ourselves to achieve it. At what point does it make more sense to turn our attention from improving a particular product to shipping that
product, or at the very least, improving something else? How best can we motivate management to invest in processes and systems that lead
to higher quality for less effort? We can strive for perfection, but what if we run out of time before we achieve that worthy goal? Wouldn’t it
be helpful to form an idea of good enough quality, just in case perfection proves itself to be out of reach? We also need to consider that “as
good as we possibly can do” might not be good enough. Even perfection might not be good enough if we seek to achieve something that’s
impossible to begin with. No matter what we want to achieve, it sure comes in handy to consider the dynamics of required quality vs. desired
quality.

46

Bug Fix Analysis

Problem Analysis

1 Frequency
1.1 How was the bug found?

1.1.1 Was it found by a user?
1.1.2 Is it a natural or contrived case?
1.1.3 Is it a typical or pathological case?
1.1.4 Was the bug caused by a recent fix to another bug?

1.2 How often is it likely to occur?
1.2.1 Is it intermittent or predictable?
1.2.2 Is it a one-time problem or ongoing?

1.3 How soon after the bug was created did we discover it?

2 Severity
2.1 Does the bug cause any user data to be lost?

2.2 Will it cause an additional load for Technical Support?

2.3 How likely is the user to notice it when it occurs?

2.4 Is it the tip of an iceberg?
2.4.1 Will it trigger other problems?
2.4.2 Is it part of a class of bugs that should all be fixed?
2.4.3 Does it represent a basic design deficiency?

2.5 Was this bug shipped in the previous release?
2.5.1 Did Technical Support hear anything about it?
2.5.2 Has anything changed since the last version that would

make it more or less of a problem?
2.6 Is this bug less severe than others we've deferred? more severe than

others we've fixed?

3 Publicity
3.1 Are certain kinds of users more likely to be affected than others?

3.1.1 How sophisticated are those users?
3.1.2 How vocal are those users?
3.1.3 How important are those users?
3.1.4 Will it affect the review writers at any major magazines?

3.2 Are our competitors strong or weak in the same functional areas?

3.3 Is this the first release of this feature or is there an installed base?

3.4 Is the problem so esoteric that no one will notice before we can
update the product?

3.5 Does it look like a defect to the casual observer, or like a natural
limitation?

47

Solution Analysis

4 Identification
4.1 Is the solution related to third-party components?

4.2 What are the workarounds?
4.2.1 Are they obvious or esoteric?

4.3 Can we “document around it” instead of fixing it?

4.4 Can the solution be postponed until the next release?

4.5 Is a fix known?
4.5.1 Are there several possible fixes or just one?
4.5.2 How many lines of code are involved?
4.5.3 Is it complex code or simple code?
4.5.4 Is it familiar code or legacy code?
4.5.5 Is the fix a tweak, rewrite, or substantial new code?
4.5.6 How long will it take to implement the fix?
4.5.7 What components are affected by the fix?
4.5.8 Will it require rebuilds of dependent components?
4.5.9 Does the fix impact documentation in any way? screenshots? online

help?

5 Verification
5.1 What new problems could the fix cause? worst case?

5.2 How effectively could we test the fix, if we authorize it?
5.2.1.1 Was this bug found late in the project? Does that

indicate a weakness in the test suite?
5.2.1.2 Will the test automation cover this case?
5.2.1.3 Could the fix be sent specially to some or all of the

beta testers?

5.3 How hard would it be to undo the fix, if there's trouble with it?

6 Perspective
6.1 How dangerous is it to make changes in this code?

6.2 Will a fix to this component be the only reason to rebuild or remaster?

6.3 Who wants this fix internally? What are the politics involved?

6.4 How does the overall quality compare to previous releases?

6.5 If we think this bug is important, why not slip the schedule by two
weeks and fix more bugs?

6.6 What would be the right thing to do? the safe thing to do?

7 Prevention
7.1 Was the problem caused by a fix approved after code freeze?

7.2 What was the error that caused the defect?

7.3 Is there any internal error checking or unit test that should be added
to catch bugs of this type?

7.4 Is there any review process that could catch bugs like this before they
get into the build?

48

A Concise QA Process
(Developed by me, James Bach, for a start-up market-driven product company with a
small base of customers, this process is intended to be consistent with the principles of
the Context-Driven School of testing and the Rapid Testing methodology. Although it is
not a “best practice”, I offer it as an example of how a concise QA process might look.)

This document describes the basic terminology and agreements for an agile QA process.

If these ideas don’t seem agile to you, question them, then change them.

Build Protocol
Addresses the problem of wasting time in a handoff from development to testing.

[When time is of the essence] Development alerts testing as soon as they know they’ll
be delivering a build.

Development sends testing at least a bullet list describing the changes in the build.

Development is available to testers to answer questions about fixes or new features.

Development updates bug statuses in the bug tracking system.

Development builds the product based on version controlled code, according to a
repeatable build process, stamping each build with unique version number.

When the build is ready, it is placed on the server.

Testing commits to reporting sanity test status within one hour of build delivery.

Test Cycle Protocol
Addresses the problem of diffusion of testing attention and mismatch of expectations
between testing and its clients.

There are several kinds of test cycle:

Full cycle: All the testing required to take a releasable build about which we know
nothing and qualify it for release. A full test cycle is a rare event.

Normal cycle: This is either an incremental test cycle, during Feature Freeze or Code
Freeze, based on testing done for earlier builds, or it’s an interrupted cycle, which
ends prematurely because a new build is received, or because testing is called off.

Spot cycle: This is testing done prior to receiving a formal build, at the spontaneous
request of the developer, to look at some specific aspect of the product.

Emergency cycle: “Quick! We need to get this fix out.” If necessary testing will drop
everything and, without prior notice, can qualify a release in hours instead of days.
This would be a “best effort” test process that involves more risk of not catching an
important bug.

49

What happens in a test cycle:

Perform smoke test right away.
Install product in test lab.
Run convenient test automation.
Verify bug fixes.
Test new stuff.
Re-test anything suspected to be impacted by changes.
Periodically re-test things not tested recently.
Periodically re-test previously fixed bugs.
Perform “enabled” test activities (what recent additions or fixes make possible).
Revisit mystery bugs.
Continue previous test cycle.
Investigate and report problems; otherwise provide quick feedback to development.
Coordinate help from part-time testers.

Change Protocol
Addresses the problem of excessive retesting or failure to detect important problems late
in the development cycle.

Release Team: This is the person or persons who make the decision (or substantially
contribute to the decision) to release the product. Typically includes development
manager, test manager, product manager, and project manager.

There are different levels of change control because we have competing goals. We want
to get the job done fast, and we want to get it done right. This calls for phased change
control. Freezing allows testing to run briefer test cycles.

On any real project, some of these phases may be skipped. A small release might go
directly to code freeze.

Alpha: Development manages changes within itself. No externally imposed protocol.

Feature Freeze: Typically begins with the delivery of a feature complete build. No
new features without specific Release Team approval. Any bug fix can be made
without approval.

Code Freeze: Typically begins with the delivery of a release candidate. No changes
of any kind can be made without specific approval by the Release Team.

The release team must meet periodically, perhaps every day, during freezes. They look
over change requests and bugs and decide what will be done.

50

Release Protocol
Addresses the problem of messing up at the very last minute.

Signoff: The release team formally decides that a particular release candidate can be
shipped.

Package testing: Testing performs final checks, including a virus scan, release notes
review, and file version review. Final installation testing.

FCS: Final customer ship.

Acceptance Testing: Customer installs and tests product while testers and developers
stand by to support.

51

52

Putt Putt Saves the Zoo
(Product coverage outline after 1 hour)

Plot Line

pre-rescue parental conversations

post-rescue parental conversations

changing baby conversations & sound bites

Pre-Rescue Sequences

Post-Rescue Sequences

Conversations

Characters

ShopKeeper

Food Cart

Gift Cart

Outback Al

Animal Parents

Animal Babies

Putt-Putt

Props

List of Animals

Map of Zoo

Zoo Chow

Dog

Rope

Shovel

Hot Cocoa

Toolbox

Log

Raft

Cheese puffs

Camera

Screens

Screen states

General

Special

Seal slide

Rapids

Alligator Bridge

Props

Snapshots

Toolbox

List of animals

Sprites

Stateless

State-Based

One shot

Random

Cyclic

Words

Gamettes

Tag

Hockey

Paint Shack

Rescue Gamettes

Tools

Icebergs

Cocoa

Rope

Drawbridge

53

 54

Table formatting Test Notes
(After 60 Minutes)

Issues

- This is a very complex feature set. There appear to be many interesting
interactions.
- The analysis, below, is not complete. We need to continue to refine and
enhance it.
- What is the error handling philosophy, here?
- Is there a debug version of this?
- Is there a tool that the other testers use to test this?

Process

* Functional analysis
 - Most of what I did was preparatory to creating an inventory of test
requirements.

* Functional exploration
 - briefly reviewed help
 - toured the menus and functions of Word that were related to table
formatting.
 - contrived new table data and reviewed some existing Word files.
 - applied various stressing strategies (not systematically)
 - I did *not* apply a very precise oracle for most of what I did.

Strategy ideas

Stress test (contrived data and natural data)
Buffer overflow attack
Edit a large book.
Convert a WordPerfect file and work with tables in it.
Convert a web page from HTML and work with a table in it.
Review existing bug reports, or talk to a support guy.
Pairs matrix?
Use a table generation tool

Functions

Table Menu
 insert
 select
 delete
 convert
 Autoformatting
 Drawing Tables

Context Menu
 table properties
 (more)

Elements of Tables
 Cells
 Cells across
 Cells down
 interaction between cells and page breaks
 Long tables
 repeat headings (page breaks)

55

Elements of Cells
 Borders and Shading

 Fill color
 patterns
 text position
 text orientation
 text alignment
 contents
 text
 pictures
 OLE objects
 other tables

Other interesting elements

Document types
sequences of actions
interaction with other functions
- save as
- save and restore (format preserved?)
- spell check
- undo
- redo
- printing (compare printed with screen output)

Platform

Memory
processor speed
Operating system
Accessability options
 high contrast

56

DiskMapper Test Notes
(After 30 Minutes)

FUNCTIONS

Map Drive
 ???when is drive mapped?
Drive Selection
Print Map
File Operations
 delete
 unzip/zip
 print
 run
 information
Invoke Explorer
Exit/Startup
Mapping Method
 Color Scheme
 level colors
 Color by
 levels
 age
 extension
 archive
 protected
 never used
Goto Root
Zoom in/out
Show one/many levels
General Options
Font Options
Online Help
About Box
Toolbar/Menus
Window management
Map display
 correctness of proportions
 filenames
 box graphics
 colors
 box vanish
 Status bar display
Map Behavior
 zooming
 highlighting
 updating
Settings preservation (dm32.ini)

57

DiskMapper Test Notes
(after 60 minutes)

The purpose of DM appears to be to provide a view of disk contents in a
manner proportional to the size of each file and folder, and to support
basic file operations on those contents. The proportional display is the
central feature of the product.

Risks:

- disk corruption (causing/scanning)
- accidental deletion
- incorrect proportions
- files not displayed that should be
- ???spurious files displayed
- obsolete view of map
- Multi-tasking interference
- misleading coloring
- Big disks not displayed correctly
- display method corruption (accidentally messing up the settings and
not being able to reset them)
- bad file information
- unreadable map printout
- system incompatibility
- poor performance
- ???crashing
- ???interference with other running apps

Major risks:

- display is substantially wrong
- file loss or corruption
- frequent crashes
- system incompatibility
- fails on large data sets

Functional areas to test:

Navigation
Mapping methods
Proportional display
File operations
Documentation
Windows compatibility
General UI

Platform:

Windows 98
2.1 gb disk drive
???bigger drive availability?
???Floppy disks?
???Servers

58

Test data:

???automatic generation of file structure?

files
 large (limits???)
 small (0)
 old
 new
 extension
 archive
 protection
 usage (never/not never)
 names
file groups
 large/small juxtaposed
 large number of small files

folders
 names
 deep nesting (max???)
 overflow the colors
 ???is the root special?

Ini file settings
 valid
 randomized???

59

 60

An Exploratory Tester’s Notebook
Michael Bolton, DevelopSense
mb@developsense.com

Biography
Michael Bolton is the co-author (with senior author James Bach) of Rapid Software Testing, a
course that presents a methodology and mindset for testing software expertly in uncertain
conditions and under extreme time pressure.

A testing trainer and consultant, Michael has over 17 years of experience in the computer
industry testing, developing, managing, and writing about software. He is the founder of
DevelopSense, a Toronto-based consultancy. He was with Quarterdeck Corporation for eight
years, during which he delivered the company’s flagship products and directed project and
testing teams both in-house and around the world.

Michael has been teaching software testing around the world for eight years. He was an invited
participant at the 2003, 2005, 2006, and 2007 Workshops on Teaching Software Testing in
Melbourne and Palm Bay, Florida; was a member of the first Exploratory Testing Research
Summit in 2006. He is also the Program Chair for TASSQ, the Toronto Association of System
and Software Quality, and a co-founder of the Toronto Workshops on Software Testing. He has
a regular column in Better Software Magazine, writes for Quality Software (the magazine
published by TASSQ), and sporadically produces his own newsletter.

Michael lives in Toronto, Canada, with his wife and two children.

Michael can be reached at mb@developsense.com, or through his Web site,
http://www.developsense.com

Abstract: One of the perceived obstacles towards testing using an exploratory testing approach
is that exploration is unstructured, unrepeatable, and unaccountable, but a look at history
demonstrates that this is clearly not the case. Explorers and investigators throughout history
have made plans, kept records, written log books, and drawn maps, and have used these
techniques to record information so that they could report to their sponsors and to the world at
large. Skilled exploratory testers use similar approaches to describe observations, to record
progress, to capture new test ideas, and to relate the testing story and the product story to the
project community. By focusing on what actually happens, rather than what we hope will
happen, exploratory testing records can tell us even more about the product than traditional pre-
scripted approaches do.

In this presentation, Michael Bolton invites you on a tour of his exploratory testing notebook and
demonstrates more formal approaches to documenting exploratory testing. The tour includes a
look at an informal exploratory testing session, simple mapping and diagramming techniques,
and a look at a Session-Based Test Management session sheet. These techniques can help
exploratory testers to demonstrate that testing has been performed diligently, thoroughly, and
accountably in a way that gets to the heart of what excellent testing is all about: a skilled
technical investigation of a product, on behalf of stakeholders, to reveal quality-related
information of the kind that they seek.

61

Documentation Problems
There are many common claims about test documentation: that it’s required for new testers or
share testing with other testers; that it’s needed to deflect legal liability or to keep regulators
happy; that it’s needed for repeatability, or for accountability; that it forces you to think about
test strategy. These claims are typically used to support heavyweight and formalized approaches
to test documentation (and to testing itself), but no matter what the motivation, the claims have
this in common: they rarely take context, cost, and value into account. Moreover, they often
leave out important elements of the story. Novices in any discipline learn not only through
documents, but also by observation, participation, practice, coaching, and mentoring; tester may
exchange information through conversation, email, and socialization. Lawyers will point out
that documentation is only one form of evidence—and that evidence can be used to buttress or to
skewer your case—while regulators (for example, the FDA1) endorse the principle of the least
burdensome approach. Processes can be repeatable without being documented (how do people
get to work in the morning?), and auditors are often more interested in the overview of the story
than each and every tiny detail. Finally, no document—least of all a template—ever forced
anyone to think about anything; the thinking part is always up to the reader, never to the
document.

Test documentation is often driven by templates in a way that standardizes look and feel without
considering content or context. Those who set up the templates may not understand testing
outside the context for which the template is set up (or they may not understand testing at all);
meanwhile, testers who are required to follow the templates don’t own the format. Templates—
from the IEEE 829 specification to Fitnesse tests on Agile projects—can standardize and
formalize test documentation, but they can also standardize and formalize thinking about testing
and our approaches to it. Scripts stand the risk of reducing learning rather than adding to it,
because they so frequently leave out the motivation for the test, alternative ways of
accomplishing the user’s task, and variations that might expose bugs.

Cem Kaner, who coined the term exploratory testing in 1983, has since defined it as “a style of
software testing that emphasizes the personal freedom and responsibility of the individual tester
to continually optimize the value of her work by treating test-related learning, test design, and
execution as mutually supportive activities that run in parallel throughout the project.”2 A useful
summary is “simultaneous test design, test execution, and learning.” In exploratory testing, the
result of the last test strongly influences the tester’s choices for the next test. This suggests that
exploratory testing is incompatible with most formalized approaches to test documentation, since
most of them segregate design, execution, and learning; most emphasize scripted actions; and
most try to downplay the freedom and responsibility of the individual tester. Faced with this
problem, the solution that many people have used is simply to avoid exploratory testing—or at
least to avoid admitting that they do it, or to avoid talking about it in reasonable ways. As

1 The Least Burdensome Provisions of the FDA Modernization Act of 1997; Concept and Principles; Final
Guidance for FDA and Industry. www.fda.gov/cdrh/modact/leastburdensome.html
2 This definition was arrived at through work done at the 2006 Workshop on Heuristic and Exploratory Testing,
which included James Bach, Jonathan Bach, Scott Barber, Michael Bolton, Tim Coulter, Rebecca Fiedler, David
Gilbert, Marianne Guntow, James Lyndsay, Robert Sabourin, and Adam White. The definition was used at the
November 2006 QAI Conference. Kaner, “Exploratory Testing After 23 Years”, www.kaner.com/pdfs/ETat23.pdf

62

McLuhan said, “We shape our tools; thereafter our tools shape us.”3 Test documentation is a
tool that shapes our testing.

Yet exploration is essential to the investigative dimension of software testing. Testing that
merely confirms expected behaviour can be expected to suffer from fundamental attribution error
(“it works”), confirmation bias (“all the tests pass, so it works”), and anchoring bias (“I know it
works because all the tests pass, so it works”). Testers who don’t explore the software fail to
find the bugs that real users find when they explore the software. Since any given bug is a
surprise, no script is available to tell you how to investigate that bug.

Sometimes documentation is a product, a deliverable of the mission of testing, designed to be
produced for and presented to someone else. Sometimes documentation is a tool, something to
help keep yourself (or your team) organized, something to help with recollection, but not
intended to be presented to anyone4. In the former case, presentation and formatting are
important; in the latter case, they’re much less important. In this paper, I’ll introduce (or for
some people, revisit) two forms of documentation—one primarily a tool, and the other a
product—to support exploratory approaches. The first tends to emphasize the learning
dimension, the latter tends to be more applicable to test design and test execution.

This paper and the accompanying presentation represent a highly subjective and personal
experience report. While I may offer some things that I’ve found helpful, this is not intended to
be prescriptive, or to offer “best practices”; the whole point of notebooks—for testers, at least—
is that they become what you make of them.

An Exploratory Tester’s Notebook
Like most of us, I’ve kept written records, mostly for school or for work, all my life. Among
other means of preserving information, I’ve used scribblers, foolscap paper, legal pads, reporter
or steno notepads, pocket notepads, ASCII text files, Word documents, spreadsheets, and
probably others.

In 2005, I met Jon Bach for the first time. Jon, brother of James Bach, is an expert exploratory
tester (which apparently runs in the family) and a wonderful writer on the subject of E.T., and in
particular how to make it accountable. The first thing that I noticed on meeting Jon is that he’s
an assiduous note-taker—he studied journalism at university—and over the last year, he has
inspired me to improve my note-taking processes.

The Moleskine Notebook
One factor in my personal improvement in note-taking was James Bach’s recommendation of the
Moleskine pocket notebook. I got my first one at the beginning of 2006, and I’ve been using it
ever since. There are several form factors available, with soft or hard covers. The version I have
fits in a pocket; it’s perfect-bound so it lies flat; it has a fabric bookmark and an elasticized loop
that holds the book closed. The pages can be unlined, lined, or squared (graph paper)5. I prefer
the graph paper; I find that it helps with sketching and with laying out tables of information.

3 Marshall McLuhan, Understanding Media: The Extensions of Man (Critical Edition). Gingko Press, Costa
Madera, CA, September 2003.
4 See Kaner, Cem; Bach, James, and Pettichord, Bret, Lessons Learned in Software Testing. John Wiley & Sons,
New York, 2002.
5 They can also be lined with five-line staff paper for musicians.

63

Figure 1: Page from Michael Bolton's Notebook #2

The Moleskine has a certain kind of chic/geek/boutique/mystique kind of appeal; it turns out that
there’s something of a cult around them, no doubt influenced by their marketing. Each notebook
comes with a page of history in several languages, which adds to the European cachet. The page
includes the claim that the Moleskine was used by Bruce Chatwin, Pablo Picasso, Ernest
Hemingway, Henri Mattisse, Andre Breton, and others who are reputed to have used the
Moleskine. The claim is fictitious6, although these artists did use books of the same colour, form
factor, with sewn bindings and other features that the new books reproduce. The appeal, for me,
is that the books are well-constructed, beautiful, and inviting. This reminds me of Cem Kaner’s
advice to his students: “Use a good pen. Lawyers and others who do lots of handwriting buy
expensive fountain pens for a reason. The pen glides across the page, requiring minimal pressure
to leave ink.”7 A good tool asks to be used.

Why Use Notebooks?
In the age of the personal digital assistant (I have one), the laptop computer, (I have one), and the
desktop computer (I have one), and the smart phone (I don’t have one), why use notebooks?

• They’re portable, and thus easy to have consistently available.
• They never crash.
• They never forget to auto-save.
• The batteries don’t wear out, they don’t have

to be recharged—and they’re never AA
when you need AAA or AAA when you
need AA.

• You don’t have to turn them off with your
other portable electronic devices when the
plane is taking off or landing.

Most importantly, notebooks are free-form and
personal in ways that the “personal” computer
cannot be. Notebooks afford diversity of
approaches, sketching and drawing, different
thinking styles, different note-taking styles. All
Windows text editors, irrespective of their features,
still look like Windows programs at some level. In
a notebook, there’s little to no reformatting; “undo”
consists of crossing out a line or a page and starting
over or, perhaps more appropriately, of tolerating
imperfection. When it’s a paper notebook, and it’s
your own, there’s a little less pressure to make
things look good. For me, this allows for a more
free flow of ideas.

In 2005, James and Jonathan Bach presented a
paper at the STAR West conference on exploratory

6 http://www.iht.com/articles/2004/10/16/mmole_ed3_.php
7 http://www.testingeducation.org/BBST/exams/NotesForStudents.htm

64

dynamics, skills and tactics. Michael Kelly led a session in which we further developed this list
at Consultants’ Camp 2006.

Several of the points in this list—especially modeling, questioning, chartering, observing,
generating and elaborating, abandoning and recovering, conjecturing, and of course recording
and reporting—can be aided by the kinds of things that we do in notebooks: writing, sketching,
listing, speculating, brainstorming, and journaling. Much of what we think of as history or
scientific discovery was first recorded in notebooks. We see a pattern of writing and keeping
notes in situations and disciplines where learning and discovery are involved. A variety of
models helps us to appreciate a problem (and potentially its solution) from more angles.
Thinking about a problem is different from uttering it, which is still different from sketching it or
writing prose about it. The direct interaction with the ink and the paper gives us a tactile mode to
supplement the visual, and the fact that handwriting is, for many people, slower than typing, may
slow down our thought processes in beneficial ways. A notebook gives us a medium in which to
record, re-model, and reflect. These are, in my view, essential testing skills and tactics.

From a historical perspective, we are aware that Leonardo was a great thinker because he left
notebooks, but it’s also reasonable to consider that Leonardo may have been a great thinker at
least in part because he used notebooks.

Who Uses Notebooks?
Inventors, scientists, explorers, artists, writers, and students have made notebook work part of
their creative process, leaving both themselves and us with records of their thought processes.

Leonardo da Vinci’s notebooks are among the most famous books in history, and also at this
writing the most expensive; one of them, the Codex Leicester, was purchased in 1994 for $30.8
million by a certain ex-programmer from the Pacific Northwest8. Leonardo left approximately
13,000 pages of daily notes and drawings. I was lucky enough to see one recently—the Codex
Foster, from the collection of the Victoria and Albert Museum.

8 Incidentally, the exhibit notes and catalog suggested that Leonardo didn’t intend to encrypt his work via the mirror
writing for which he was so famous; he wrote backwards because he was left-handed, and writing normally would
smudge the ink.

65

Figure 2: Leonardo da Vinci, The Codex Foster

As a man of the Renaissance, Leonardo blurred the lines between artist, scientist, engineer, and
inventor9, and his notebooks reflect this. Leonardo collects ideas and drawings, but also puzzles,
aphorisms, plans, observations. They are enormously eclectic, reflecting an exploratory outlook
on the world. As such, his notebooks are surprisingly similar to the notebook patterns of
exploratory testers described below, though none has consciously followed Leonardo’s
paradigms or principles, so far as I know. The form factor is also startlingly similar to the
smaller Moleskine notebooks. Obviously, the significance of our work pales next to Leonardo’s,
but is there some intrinsic relationship between exploratory thinking and the notebook as a
medium?

What Do I Use My Notebook For?
I’ve been keeping three separate notebooks. My large-format book contains notes that I take
during sessions at conferences and workshops. It tends to be tidier and better-organized. My
small-format book is a ready place to record pretty much anything that I find interesting. Here
are some examples:

Lists of things, as brainstorms or catalogs. My current lists include testing heuristics;
reifications; and test ideas. These lists are accessible and can be added to or referenced at any
time. This is my favorite use of the Moleskine—as a portable thinking and storage tool.

“Fieldstones” and blog entries. Collections of observations; the odd rant; memorable quotes;
aphorisms. The term “fieldstone” is taken from Gerald M. Weinberg’s book Weinberg on
Writing: The Fieldstone Method. In the book, Jerry uses the metaphor of the pile of stones that
are pulled from the field as you clear it; then you assemble a wall or a building from the
fieldstones.10 I collect ideas for articles and blog entries and develop them later.

9 How To Think Like Leonardo da Vinci
10 Weinberg, Gerald M., Weinberg on Writing: The Fieldstone Method.

66

Logs of testing sessions. These are often impromptu, used primarily to practice testing and
reporting, to reflect and learn later, and to teach the process. A couple of examples follow
below.

Meeting notes. He who controls the minutes controls history, and he who controls history
controls the world.

Ultra-Portable PowerPoints. These are one-page presentations that typically involve a table or
a diagram. This is handy for the cases in which I’d like to make a point to a colleague or client.
Since the listener focuses on the data and on my story, and not on what Edward Tufte11 calls
“chartjunk”, the portable PowerPoints may be more compelling than the real thing.

Mind maps and diagrams. I use these for planning and visualization purposes. I need to
practice them more. I did use a mind map to prepare this presentation.

Notes collected as I’m teaching. When a student does something clever during a testing
exercise, I don’t want to interrupt the flow, but I do want to keep track of it so that I can recount
it to the class and give recognition and appreciation to the person who did it. Moreover, about
half the time this results in some improvement to our course materials12, so a notebook entry is
very handy.

Action items, reminders, and random notes. Sometimes the notebook is the handiest piece of
paper around, so I scribble something down on a free page—contact names (for entry later),
reminders to send something to someone; shopping lists.

Stuff in the pocket. I keep receipts and business cards (so I don’t lose them). I also have a
magic trick that I use as a testing exercise that fits perfectly into the pocket.

I try to remember to put a title and date on each page. Lately I’ve been slipping somewhat,
especially on the random notes pages.

I’ve been using a second large-format notebook for notes on books that I’m studying. I haven’t
kept this up so well. It’s better organized than my small format book, but my small format book
is handy more often, so notes about books—and quotes from them—tend to go in that.

I’m not doing journaling, but the notebooks seem to remind me that, some day, I will. Our
society doesn’t seem to have the same diary tradition as it used to; web logs retrieve this idea.
Several of my colleagues do keep personal journals.

How Do Other Exploratory Testers Use Notebooks?
I’ve done a very informal and decidedly unscientific survey of some of my colleagues, especially
those who are exploratory testers.

11 Tufte, Edward, Envisioning Information. Graphics Press, Chesire, Connecticut, 1990.
12 Bach, James, and Bolton, Michael, Rapid Software Testing. http://www.satisfice.com/rst.pdf.

67

Adam White reports, “My notebook is my life. It's how I keep track of things I have to do. It
supplements my memory so that I don't waste brain power on remembering to remember
something. I just record it and move on.

“I have found a method of taking notes that brings my attention to things. If someone tells me
about a book then I will write "Book" and underline it twice. Then when flipping back through
my notes I can see that I have a reference to a book that I thought was interesting at some point
in time. I use this process for other things like blogs, websites, key ideas, quotes etc. It makes
organizing information after the fact very easy.”

Adam reports similar experiences to my own in how he came to use Moleskines. He too
observed Jon Bach and James Bach using Moleskine notebooks; he too uses a selection of
books—one large-form for work, one large-form for personal journaling, and a small one for
portability and availability. He also says that the elastic helps to prevent him from losing pens.

Jonathan Kohl also reports that he uses notebooks constantly. “My favorite is my Moleskine, but
I also use other things for taking notes. With my Moleskine, I capture test ideas; article ideas;
diagrams or models I am working on for articles; teaching materials, or some other reason for an
explanation to others; and testing notes13. I have a couple of notes to help focus me, and the rest
are ideas, impressions, and the starred items are bugs. I translated the bugs into bug reports in a
fault tracking system, and the other notes into a document on risk areas. For client work, I don't
usually use my Moleskine for testing, since they may want my notes.” This is an important point
for contractors and full-time employees; your notebook may be considered a work product—and
therefore the property of your company—if you use it at work, or for work.

“I also use index cards (preferably post-it note index cards), primarily for bug reports,” continues
Jonathan. “My test area is often full of post-its, each a bug, at the end of a morning or afternoon
testing session. Over time, I arrange the post-its according to groups, and log them into a bug
tracker or on story cards (if doing XP.) When I am doing test automation/test toolsmith work, I
use story cards for features or other tasks, and others for bugs.”

Jonathan also uses graph-paper pads for notes that he doesn't need to keep. They contain rough
session and testing notes; diagrams, scrawls, models, or things that he is trying to understand
better; analysis notes, interview points, and anything else he’s interested in capturing. “These
notes are illegible to most people other than me, and I summarize them and put what is needed
into something more permanent.” This is also an important point about documentation in
general: sometimes documentation is a product—a deliverable, or something that you show to or
share with someone else. At other times, documentation is a tool—a personal aid to memory or
thought processes.

“I worked with engineers a lot starting out, so I have a black notebook that I use to record my
time and tasks each day. I started doing this as an employee, and do it as a consultant now as
well.”

Fiona Charles also keeps a project-specific notebook. She uses a large form factor, so that it can
accommodate 8½ x11 pages pasted into it. She also pastes a plastic pocket, a calendar, and loose
notes from pre-kickoff meetings—she says that a glue stick is an essential part of the kit. In the

13Jonathan provides an example at http://www.kohl.ca/articles/ExploratoryTesting_MusicofInvestigation.pdf

68

notebook, she records conversations with clients and others in the project community. She uses
clear termination line for dates, sets of notes, and “think pages.”

Jerry Weinberg also uses project notebooks. On the first page, he places his name, his contact
information, and offer of a reward for the safe return of the book. On the facing page, he keeps a
list of contact info for important people to the project. On the subsequent pages, he keeps a daily
log from the front of the book forwards. He keeps a separate list of learnings from the back of
the book backward, until the two sections collide somewhere in the middle; then he starts a new
book. “I always date the learnings,” he says. “In fact, I date everything. You never know when
this will be useful data.” Like me, he never tears a page out.

Jerry is also a strong advocate of journaling14. For one thing, he treats starting journaling—and
the reader’s reaction to it—as an exercise in learning about effecting change in ourselves and in
other people. “One great advantage of the journal method,” he says, “is that unlike a book or a
lecture, everything in it is relevant to you. Because each person’s learning is personal, I can’t
you what you’ll learn, but I can guarantee that you’ll learn something.” That’s been my
experience; the notebook reflects me and what I’m learning. It’s also interesting to ask myself
about the things, or kinds of things, that I haven’t put it.

Jon Bach reports that he uses his notebooks in several modes. “‘Log file’, to capture the flow of
my testing; ‘epiphany trap’, to capture "a ha!" moments (denoted by a star with a circle around
it); diagrams and models—for example, the squiggle diagram when James and I first roughed out
Session-Based Test Management; to-do lists—lots and of lots them, which eventually get put
into Microsoft Outlook's Task Manager with a date and deadline—reminders, flight, hotel, taxi
info when traveling, and phone numbers; quotes from colleagues, book references, URLs; blog
ideas, brainstorms, ideas for classes, abstracts for new talks I want to do; heuristics, mnemonics;
puzzles and their solutions (like on a math exam that says "show your work"); personal journal
entries (especially on a plane); letters to my wife and child -- to clear my head after some
heinous testing problem I might need a break from.”

Jon also identifies as significant the paradigm “‘NTSB Investigator.’ I'll look back on my old
notes for lost items to rescue—things that are may have become more important than when I first
captured them because of emergent context. You would never crack open the black box of an
airplane after a successful flight, but what if there was a systemic pattern of silent failures just
waiting to culminate in a HUGE failure? Then you might look at data for a successful flight and
be on the lookout for pathologies.”

Example: An Impromptu Exploratory Testing Session
I flew from Delhi to Amsterdam. I was delighted to see that the plane was equipped with a
personal in-flight entertainment system, which meant that I could choose my own movies or TV
to watch. As it happened, I got other entertainment from the system that I wouldn’t have
predicted.

The system was menu-driven. I went to the page that listed the movies that were available, and
after scrolling around a bit, I found that the “Up” button on the controller didn’t work. I then
inspected the controller unit, and found that it was cracked in a couple of places. Both of the

14 Becoming a Technical Leader, pp. 80-85

69

cracks were associated with the mechanism that returned the unit, via a retractable cord, to a
receptacle in the side of the seat. I found that if I held the controller just so, then I could get
around the hardware—but the software failed me. That is, I found lots of bugs. I realized that
this was an opportunity to collect, exercise, and demonstrate the sorts of note-taking that I might
perform when I’m testing a product for the first time. Here are the entries from my Moleskine,
and some notes about my notes.

When I take notes like this,
they’re a tool, not a product. I
don’t expect to show them to
anyone else; it’s a possibility, but
the principal purposes are to
allow me to remember what I did
and what I found, and to guide a
discussion about it with someone
who’s interested.

I don’t draw well, but I’m slowly
getting better at sketching with
some practice. I find that I can
sketch better when I’m willing to
tolerate mistakes.

In the description of the red block, at the top of the left page, I failed to mention that this red
block appeared when I went right to the “What’s On” section after starting the system. It didn’t
reproduce.

70

Whenever I look back on my notes, I recognize things that I missed. If they’re important, I write
them down as soon as I realize it. If they’re not important, I don’t bother. I don’t feel bad about
it either way; I try always to get better at it, but testers aren’t omniscient. Note “getting
sleepy”—if I keep notes on my own mental or emotional state, they might suggest areas that I
should revisit later. One example here: on the first page of these notes, I mentioned that I
couldn’t find a way to contact the maker of the entertainment system. I should have recognized
the “Feedback” and “Info” menu items, but I didn’t; I noticed them afterwards.

After a few hours of
rest, I woke up and
started testing again.

Jon Bach recently
pointed out to me that,
in early exploration, it’s
often better to start not
by looking for bugs, but
rather by trying to build
a model of the item
under test. That
suggests looking for the
positives in the product,
and following the happy
path. I find that it’s
easy for me to fall into
the trap of finding and
reporting bugs. These

notes reflect that I did fall into the trap, but I also tried to check in and return to modeling from
time to time. At the end of this very informal and completely freestyle session, I had gone a long
way towards developing my model and identifying various testing issues. In addition, I had
found many irritating bugs.

Why perform and record
testing like this? The
session and these notes,
combined with a
discussion with the
project owner, might be
used as the first iteration
in the process of
determining an overall
(and perhaps more
formal) strategy for
testing this product. The
notes have also been a
useful basis for my own
introspection and critique

71

of my performance, and to show others some of my though process through an exploratory
testing session.

A More Formal Structure for Exploratory Testing
Police forces all over the world use notebooks of some description, typically in a way that is
considerably more formalized. This is important, since police notebooks will be used as
evidence in court cases. For this reason, police are trained and required to keep their notebooks
using elements of a more formal structure, including time of day; exact or nearest-to location; the
offence or occurrence observed; the names and addresses of offenders, victims or witnesses;
action taken by the officer involved (e.g. arrests), and details of conversations and other
observations. (The object of the exercise here is not to turn testers into police, but to take useful
insights from the process of more formal note-taking.)

How can we help to make testing similarly accountable? Session-Based Test Management
(SBTM), invented by James and Jonathan Bach in 2000 is one possible answer. SBTM has as its
hallmark four elements:

• Charter
• Time Box
• Reviewable Result
• Debriefing

The charter is a one- to three-sentence mission for a testing session. The charter is designed to
be open-ended and inclusive, prompting the tester to explore the application and affording
opportunities for variation. Charters are not meant to be comprehensive descriptions of what
should be done, but the total set of charters for the entire project should include everything that is
reasonably testable.

The time box is some period of time between 45 minutes and 2 ¼ hours, where a short session is
one hour (+/- 15 minutes), a long session is two, and a normal session is 90 minutes. The
intention here is to make the session short enough for accurate reporting, changes in plans (such
as a session being impossible due to a broken build, or a session changing its charter because of a
new priority), but long enough to perform appropriate setup, to get some good testing in, and to
make debriefing efficient. Excessive precision in timing is discouraged; anything to the nearest
five or ten minutes will do. If your managers, clients, or auditors are supervising you more
closely than this,

The reviewable result takes the form of a session sheet, a page of text (typically ASCII) that
follows a formal structure. This structure includes:

• Charter
• Coverage areas (not code coverage; typically product areas, product elements, quality

criteria, or test techniques)
• Start Time
• Tester Name(s)
• Time Breakdown

• session duration (long, normal, or short)

72

• test design and execution (as a percentage of the total on-charter time)
• bug investigation and reporting (as a percentage of the total on-charter time)
• session setup (as a percentage of the total on-charter time)
• charter/opportunity (expressed as a percentage of the total session, where opportunity

time does not fit under the current charter, but is nonetheless useful testing work)
• Data Files
• Test Notes
• Bugs (where a “bug” is a problem that the tester and the test manager reasonably believe

represents a threat to the value of the product)
• Issues (where an “issue” is a problem that threatens the value of the testing process—missing

information, tools that are unavailable, expertise that might be required, questions that the
tester might develop through the course of the session)

There are two reasons for this structure. The first is simply to provide a sense of order and
completeness for the report and the debrief. The second is to allow a scripting tool to parse
tagged information from the session sheets, such that the information can be sent to other
applications for bug reporting, coverage information, and inquiry-oriented metrics gathering.
The SBTM package, available at http://www.satisfice.com/sbtm, features a prototype set of batch
files and Perl scripts to perform these tasks, with output going to tables and charts in an Excel
spreadsheet.

The debrief is a conversation between the tester15 who performed the session and someone
else—ideally a test lead or a test manager, but perhaps simply another tester. In the debrief, the
session sheet is checked to make sure that it’s readable and understandable; the manager and the
tester discuss the bugs and issues that were found; the manager makes sure that the protocol is
being followed; and coaching, mentoring, and collaboration happen. A typical debrief will last
between five to ten minutes, but several things may add to the length. Incomplete or poorly-
written session sheets produced by testers new to the approach will prompt more questions until
the tester learns the protocol. A highly complex or risky product area, a large number of bugs or
issues, or an unfamiliar product may also lead to longer conversations.

Several organizations have reported that scheduling time for debriefings is difficult when there
are more than three or four testers reporting to the test manager or test lead, or when the test
manager has other responsibilities. In such cases, it may be possible to have the testers debrief
each other.

At one organization where I did some consulting work, the test manager was also responsible for
requirements development and business analysis, and so was frequently unavailable for
debriefings. The team chose to use a round-robin testing and debriefing system. For a given
charter, Tester A performed the session, Tester B debriefed Tester A, and at regression testing
time, Tester C took a handful of sheets and used them as a point of departure for designing and
executing tests. For the next charter, Tester B performed the testing, Tester C the debrief, and
Tester A the regression; and so forth. Using this system, each tester learned about the product
and shared information with others by a variety of means—interaction with the product,
conversation in the debrief, and written session sheets. The entire team reported summaries of

15 Or “testers”; SBTM can be used with paired testers.

73

the debriefings to the test manager when he was not available, and simply debriefed directly with
him when he was.

Two example session sheets follow. The first is an account of an early phase of exploratory
testing, in which the testers have been given the charter to create a test coverage outline and a
risk list. These artifacts themselves can be very useful, lightweight documents that help to guide
and assess test strategy. Here the emphasis is on learning about the product, rather than searching
for bugs.

The second is an account of a later stage of testing, in which the tester has sufficient knowledge
about the product to perform a more targeted investigation. In this session, he finds and reports
several bugs and issues. He identifies moments at which he had new test ideas and the
motivations for following the lines of investigation.

74

Example: Session Sheet for a Reconnaissance Session

Sessions in which 100% of the time is spent on test design and execution
are rare. This reconnaissance session is an exception; the focus here is on
learning, rather than bug-finding.

SBTM lends itself well to paired testing. Two sets of eyes together often
find more interesting information—and bugs—than two sets of eyes on
their own.

Any data files generated or used during the session—in the form of
independent reports, program input or output files, screen shots, and so on—
get stored in a directory parallel to the library of session sheets.

Test coverage is not merely code coverage. Functional areas, platforms,
data, operations, and test techniques, are only a few ways to model the test
space; the greater the number and variety of models, the better the
coverage.

A test coverage outline is a useful artifact with which to guide and assess a test
strategy (the set of ideas that guide your test design), especially one which we’re
using exploratory approaches. A test coverage outline can be used as one of the
inputs into the design of session charters.

75

A risk list is another useful tool to help guide a test strategy. The
risk list can be as long or as short as you like; it can also be broken
down by product or coverage areas.

“Issues” are problems that threaten the value of the
testing process. Issues may include concerns, requests for
missing information, a call for tools or extra resources,
pleas for testability. In addition, if a tester is highly
uncertain whether something is a bug, that can be
reported here.

76

Example: Session Sheet for a Bug-Finding Session

Information generated from the session sheets can be fed back into the estimation process.

• First, we’ll cast a set of charters representing the coverage that we’d like to obtain in a given

test cycle. (Let’s say, for this example, 80 charters).
• Second, we’ll look at the number of testers that we have available. (Let’s say 4.)
• Typically we will project that a tester can accomplish three sessions per day, considering that

a session is about 90 minutes long, and that time will be spent during the day on email,
meetings, breaks, and the like.

• We must also take into account the productivity of the testing effort. Productivity is defined
here the percentage of the tester’s time spent, in a given session, on coverage—that is, on test

A single session can cover more than one functional area of
the product. Here the testers obtain coverage on both the
QuickBuild wizard and the report generator

The goal of any testing session is to obtain coverage—test design and
execution, in which we learn good and bad things about the product.
Bug investigation (learning things about a particular bug) and setup
(preparing to test), while valuable, are interruptions to this primary
goal. The session sheet tracks these three categories as inquiry
metrics—metrics that are designed to prompt questions, rather than to
drive decisions. If we’re doing multiple things at once, we report the
highest-priority activity first; if it happens that we’re testing as we’re
investigating a bug or setting up, we account for that as testing.

Test notes tend to be more valuable when they include the motivation for a given test,
or other clues as to the tester’s mindset. The test notes—the core of the session sheet—
help us to tell the testing story: what we tested, why we tested it, and why we believe
that our testing were good enough.

77

design and execution. Bug investigation is very important, but it reduces the amount of
coverage that we can obtain about the product during the session. It doesn’t tell us more
about the product, even though it may tell us something useful about a particular bug.
Similarly, setup is important, but it’s preparing to test, rather than testing; time spent on
setup is time that we can’t spend obtaining coverage. (If we’re setting up and testing at the
same time, we account for this time as testing. At the very beginning of the project, we
might estimate 66% productivity, with the other third of the time spent on setup and bug
investigation. This gives us our estimate for the cycle:

80 charters x .66 productivity x 4 testers x 3 sessions per day = 10 days

Exploratory testing, by
intention, reduces
emphasis on specific
predicted results, in order
to reduce the risk of
inattentional blindness.
By giving a more open
mandate to the tester, the
approach affords better
opportunities to spot
unanticipated problems.

New test ideas come up all the time in an
exploratory testing session. The tester is
empowered to act on them right away.

“Opportunity” work is
testing done outside the
scope of the current charter.
Again, testers are both
empowered and encouraged
to notice and investigate
problems as they find them,
and to account for the time
in the session sheet.

“Some options” might be vague here; more likely,
based on our knowledge of the tester, the specific
options are be unimportant, and thus it might be
wasteful and even misleading to provide them. The
tester, the test manager, and product team develop
consensus through experience and mentoring on how to
note just what’s important, no less and no more.

The #BUG tag allows a text-processing tool to transfer
this information to a master bug list in a bug tracking
system, an ASCII file, or an Excel spreadsheet.

78

When new information comes in—often in the form of new productivity data—we change one or
more factors in the estimate, typically by increasing or decreasing the number of testers,
increasing or reducing the scope of the charters, or shortening or lengthening the cycle.

Some questions have been raised as to whether exploratory approaches like SBTM are
acceptable for high-risk or regulated industries. We have seen SBTM used in a wide range of
contexts, including financial institutions, medical imaging systems, telecommunications, and
hardware devices.

Some also question whether session sheets meet the standards for the accountability of bank
auditors. One auditor’s liaison with whom I have spoken indicates that his auditors would not be
interested in the entire session sheet; instead, he maintained, “What the auditors really want to

Listing all of the possible
expectations for a given test
is impossible and pointless;
listing expectations that
have been jarred by a
probable bug is more
efficient and more to the
point.

A step-by-step sequence to
perform a test leads to
repetition, where variation is
more likely to expose
problems. A step-by-step
sequence to reproduce a
discovered problem is more
valuable.

79

see is the charter, and they want to be sure that there’s been a second set of eyes on the process.
They don’t have the time or the inclination to look at each line in the Test Notes section.”

Conclusion
Notebooks have been used by people in the arts, sciences, and skilled professions for centuries.
Many exploratory testers may benefit from the practice of taking notes, sketching, diagramming,
and the like, and then using the gathered information for retrospection and reflection.

One of the principal concerns of test managers and project managers with respect to exploratory
testing is that it is fundamentally unaccountable or unmanageable. Yet police, doctors, pilots,
lawyers and all kinds of skilled professions have learned to deal with problem of reporting
unpredictable information in various forms by developing note-taking skills. Seven years of
positive experience with session-based test management suggests that it is a useful approach, in
many contexts, to the process of recording and reporting exploratory testing.

Thanks to Launi Mead and Doug Whitney for their review of this paper.

80

Install Risk Catalog

Functional suitability
 • Installer lacks modern, expected features

 • no uninstall
 • no custom install
 • no partial install (“add”)
 • no upgrade install

Reliability
 • Intermittent failure

Fault tolerance/recoverability
 • Can’t back up
 • Can’t abort
 • No clean up after abort
 • Mishandled read error
 • Mishandled disk full error

Correctness
 • Wrong files installed

 • temporary files not cleaned up
 • old files not cleaned up after upgrade
 • unneeded file installed
 • needed file not installed
 • correct file installed in the wrong place

 • Wrong INI settings/registry settings
 • Wrong autoexec/config settings
 • Files clobbered

 • older file replaces newer file
 • user data file clobbered during upgrade

Compatibility
 • Installer does not function on certain platforms
 • Other apps clobbered
 • HW not properly configured

 • HW clobbered for other apps
 • HW not set for installed app

 • Screen saver disrupts install
 • No detection of incompatible apps

 • apps currently executing
 • apps currently installed

Efficiency
 • Excessive temporary storage required by install process

Usability
 • Installer silently replaces or modifies critical files or parameters
 • Install process is too slow
 • Install process requires constant user monitoring
 • Install process is confusing

 • UI is unorthodox
 • UI is easily misused

 • Messages and instructions are confusing
 • Mistakes during install process readily cause loss of effort

81

82

TNT QA Task Analysis
BC4.0 & BP7.0

7/12/92

QA Requirements Summary:

Tool Popularity Rate of Change Complexity Existing automation Required
Testing*

TD32 High High High None Extensive
TDX High High High Minimal Extensive
TDW High High High Moderate Extensive
TDV High High High Moderate Extensive
TD286 High Low High Moderate Moderate
TD386 High Low High Moderate Moderate
TD High Low High Moderate Moderate
GUIDO High High High Minimal Extensive
TPROF Moderate Moderate High None Moderate
TPROFW Moderate Moderate High None Moderate
TF386 (TFV) Low Low High Minimal Moderate
TFREMOTE Low Low Moderate None Minimal
TDREMOTE Moderate Low Moderate None Minimal
WREMOTE Low Low Moderate None Minimal
WRSETUP Low Low Low None None
TDRF Moderate Low Low None None
TDUMP32 Moderate Moderate Low None Minimal
TDUMP Moderate Low Low None None
TDINST Moderate Moderate Low Minimal Minimal
TDINST32 Moderate High Low None Minimal
TDSTRIP ??? Moderate Low None Minimal
TDMEM ??? Low Low Minimal None
TDDEV ??? Low Low Minimal None
TDH386.SYS High Low Low Moderate Moderate
TDDEBUG.386 High Low Low None Minimal
Examples ??? Moderate Low None Minimal
TASM & tools Moderate Low High Moderate Moderate

*
 Items are boldfaced where the existing automation and beta testing will have to be augmented by new automation

and hand testing.

83

Task Sets (? denotes unstaffed):
Guido Testing
(General Testing Tasks)
Produce feature outline
Produce sign-off checklist
Complete smart-script system version 1.0
Analyze hard mode vs. soft mode Integrate 100
applications into smart-script system

TDX Testing
(General Testing Tasks)
Produce sign-off checklist
Maintain communication between Purart and Gabor
Learn about DPMI
Test real mode stub
Test remote debugging

? TD32 Testing (Windows)
(General Testing Tasks)
TDINST32
Produce sign-off checklist
Learn WIN32s platform
Determine Windows NT dependencies
Track changes in NT and WIN32s Track differences
between Microsoft Win32s & Rational

? TD32 Testing (DPMI32)
(General Testing Tasks)
TDUMP32
Produce debugger example for doc.
Produce sign-off checklist
Learn DPMI32 platform
Track development of DPMI32
Coordinate testing w/DPMI32 testers

? TD/TDV Testing
(General Testing Tasks)
TD286
TD386
TDH386.SYS
TDSTRIP
TDUMP
TDMEM
TDDEV
TDRF
TDREMOTE
TDINST
Produce sign-off checklist

? TDW Testing
(General Testing Tasks)
TDDEBUG.386
WREMOTE
WRSETUP
Produce sign-off checklist
Track SVGA DLL development

? Profiler Testing
(General Testing Tasks)
TPROF
TPROFW
TF386
Produce sign-off checklist
Produce feature outline
Review automation coverage
Verify timing statistics
Collect very large applications
Identify & support in-house users
Identify & support key beta sites
Develop TFSMERGE program

? Automation1 (lead)
Produce ~600 new tests to satisfy test matrix
Produce 16-bit debugger feature outline
Assist in producing overall test matrix
Produce next generation C++-based test control
system
Produce feature coverage viewer program
Produce Monkey-based acceptance suite for
Purart
Convert smart-script system to Alverex tools
Maintain DCHECK & TCHECK

Automation2 (support)
Execute all automation and generate reports
Fix tests that break in old test system (500 total)
Generate BTS reports weekly
Adapt test system to OS/2
Adapt test system to NT
Produce ~600 new tests to satisfy matrix
Recompile test attachments with new compiler
Perform compatibility testing

Diablo1 (process control)

Diablo2 (data inspect)

Diablo3 (general functions)

TASM Testing

84

James Bach and Geordie Keitt
v.712 1/3/2007 12:42:00 AM

pce-scenarios.doc

PROCHAIN ENTERPRISE

Scenario Test Plan
Overview

Scenario testing is about how the product behaves when subjected to complex sequences of input that mirror how it
was designed to be used, as well as how it might realistically be misused. A scenario, in this context, is a story about
how the product might be used. Through scenario testing we hope to find problems that lie in the interactions among
different features, and problems that are more important because they occur during particularly common or critical
flows of user behavior.

This document describes an exploratory form of scenario testing. Our documentation philosophy is based on that of
the General Functionality and Stability Test Procedure (see http://www.satisfice.com/tools/procedure.pdf) used by
Microsoft’s compatibility test group and in Microsoft’s Certified for Windows logo program. In this process, scenario
test charters are produced, and those charters (which could also be described as very high level test procedures) are
used to guide scenario tests performed by experienced users.

Status: We have collected a lot of scenario ideas and data. We are about a third of the way through the process of
documenting it, but we have already begun the test process.

Scenario Charter Design Process

Good scenario test design requires knowledge of the purposes that the product serves and the context in which it is
used. So, we used two Prochain staff consultants and the author of the user documentation as domain experts to help
produce the scenarios. Scenario design included these activities:

 User documentation exhibits. Review documentation provided by friendly customers and the
development team. Such documentation describes how Prochain Enterprise is used by various kinds of users,
including step-by-step instructions for updating data in the system.

 Facilitated brainstorm with domain experts. Review goals and patterns of scenario testing, then
brainstorm test ideas. These ideas may include standalone elements to be incorporated into scenarios, as well
as fully worked scenario scripts, with variations.

 Chartered exploratory test sessions. Pick a couple of mainstream scenario ideas and conduct
exploratory test sessions, using domain experts as testers. In these sessions, follow a scenario theme,
developing it further while recording what each tester did using both automatic recorders and personal
observation. All the testers should use the same database to gain the benefit of implicit multi-user testing.
While some testers coordinate with each other to flesh out the scenarios, others assist in taking notes or
investigating problems.

 Scenario refinement. Once scenarios are roughed out, discuss, prune, and extend them. Look for missing
elements, and compare them with user documentation exhibits.

 Function tracing. Compare the scenarios to the features of the product to assure that we have scenarios
that, in principle, cover all the functions of the product.

85

2

Scenario Design Elements

During our design process, various elements of scenarios were identified, and we used these ideas to design the
present scenario set. Further development of the scenarios might benefit by taking these ideas into account and
extending them.

Activity Patterns

These are used as guideword heuristics to elicit ideas for deepening and varying the activities that constitute the
scenario charters.

 Tug of war; contention. Multiple users resetting the same values on the same objects.

 Interruptions; aborts; backtracking. Unfinished activities are a normal occurrence in work environments
that are full of distractions.

 Object lifecycle. Create some entity, such as a task or project or view, change it, evolve it, then delete it.

 Long period activities. Transactions that take a long time to play out, or involve events that occur
predictably, but infrequently, such as system maintenance.

 Function interactions. Make the features of the product work together.

 Personnas. Imagine stereotypical users and design scenarios from their viewpoint.

 Mirror the competition. Do things that duplicate the behaviors or effects of competing products.

 Learning curve. Do things more likely to be done by people just learning the product.

 Oops. Make realistic mistakes. Screw up in ways that distracted, busy people do.

 Industrial Data. Use high complexity project data.

Scenario Personnas

 Individual Contributors. Individual contributor scenarios involve updating tasks and viewing task status.

 Analysts (e.g. critical chain experts, resource managers, consultants). Analyst scenarios focus on
viewing and comparing tasks and projects, using the reporting features, and repeatedly popping up and
drilling down.

 Managers (e.g. task managers, project managers, senior management). Management scenarios
involve analysis, but managers also coordinate with individual contributors, which leads to more multi-user
tests. Managers update buffers and may download schedules and rewire them.

 System Administrators. System administration scenarios involve the creation and removal of users, rights
setting, system troubleshooting and recovery.

86

3

Test Dimensions

To test Prochain Enterprise effectively, all of the following variables must be considered, controlled and
systematically varied in the course of the testing. Not all scenarios will specify all of these parts, but the testers must
remain aware of them as we evaluate the completeness and effectiveness of our work.. Some of these are represented
in the structure of the scenario charters, others are represented in the activities.

 Date. Manipulation of the date is important for the longer period scenario tests. It may be enough to modify
the simulation date. We might also need to modify the system clock itself. Are we varying dates as we test,
exploring the effects of dates, and juxtaposing items with different dates?

 Project Data. In any scenario other than project creation scenarios, we need rich project data to work with.
Collect actual industrial data and use that wherever possible. Are we using a sufficient variety, quantity and
complexity of data to approximate the upper range of realistic usage?

 User Data. In any scenario other than system setup, we need users and user rights configured in diverse and
realistic ways, prior to the scenario test execution. Are enough users represented in the database to
approximate the upper range of realistic usage? Is a wide variety of rights and rights combinations
represented? Is every user type represented?

 Functions. Capability testing focuses on covering each of the functions, but we also want to incorporate
every significant function of the product into our set of scenario tests. This provides one of the coverage
standards we use to assess scenario test completeness: Is every function likely to be visited in the course of
performing all the scenario tests?

 Sequence. The specific sequence of actions to be done by the scenario tester is rarely scripted in advance.
This is because the sheer number of possible sequences, both valid and invalid, is so large that to specify
particular sequences will unduly reduce the variety of tests that will be attempted. We want interesting
sequences, and we want a lot of different sequences: Are testers varying the order in which they perform the
tasks within the scenario charters?

 Simultaneous Activity and States. Tests may turn out differently depending on what else is going on in
the system at any given moment, so the scenario tests must consider a variety of simultaneous event tests,
especially ones involving multi-user contention. Are the testers exploring the juxtaposition of potentially
conflicting states and interactions among concurrent users?

 System Configuration. Testing should occur on a variety of system configurations, especially multi-server
configurations, because the profile of findable bugs may vary widely from one setup to another. Are scenario
tests being performed on the important configurations of Enterprise?

 Oracles. An oracle is a principle or mechanism by which we recognize that a problem has occurred. With a
bad oracle, bugs happen, but testers don’t notice them. Domain experts, by definition, are people who can
tell if a product is behaving reasonably. But sometimes it takes a lot of focus, retesting, and special tooling to
reliably detect the failures that occur. For each scenario, what measures are testers taking to spot the
problems that matter?

 Tester. Anyone can perform scenario testing, but it usually takes some domain expertise to conceive of
activities and sequences of activities that are more compelling (unless it’s a Learning Curve scenario).
Different testers have different propensities and sensitivities. Has each scenario test been performed by
different testers?

87

4

Scenario Themes

This is our first cut at a fundamental set of scenario themes. Each sub-theme listed below stands alone as a separate
scenario test activity. They can be performed singly, or in combination by a test team working together.

 Project Update

- UP1: Check tasks and update.
- UP2: Check status and perform buffer update.
- UP3: Check out a project and rewire dependencies.
- UP4: Troubleshoot a project.

 Project Creation

- CR1: Add projects, finish projects, observe impact.
- CR2: Set project views, attachments, and checklists.

 System Administration

- SA1: Administration setup and customization.
- SA2: Rescale the configuration.

88

5

PROCHAIN ENTERPRISE SCENARIO TESTING

Scenario Testing Protocol and Setup

Mission Find important bugs quickly by exploring the product in ways that reflect complex, realistic, compelling usage.

Testers - As a rule, the testers should understand the product fairly well, though an interesting variation of a scenario
can be to direct a novice user to learn the product by attempting to perform the scenario test.

- The testers should understand likely users, and likely contexts of use, including the problems users are trying
to solve by using the product. When testers understand this, scenario testing will be a better counterpoint to
ordinary function testing.

- The testers should have the training, tools, and/or supervision sufficient to assure that they can recognize and
report bugs that occur.

Setup - Select a user database & project database that you can afford to mess up with your tests.
- Assure that the project database has at least two substantial projects and program in it, preferably more. The

projects should include many tasks, statuses of green/yellow/red, and multiple buffers per project.
- Tasks should have variety, e.g. short ones, long ones, key tasks, non-key tasks, started, not-started, with and

without attachments and checklists.
- Set the simulation date to intersect with the project data that you are using.
- Fulfill the setup requirements for the particular scenario test you are performing.

Activities In exploratory scenario testing, you design the tests as you run them, in accordance with a scenario test charter:

 Select a scenario test charter and spend about 90 minutes testing in accordance with it.

 Perform the activities described in the test charter, but also perform variations of them, and vary the sequence
of your operations.

 If you see something in the product that seems strange and may be a problem, investigate it, even if it is not in
the scope of the scenario test. You can return to the scenario test later.

 Incorporate micro-behaviors freely into your tests. Micro-behaviors include making mistakes and backing up,
getting online help in the middle of an operation, pressing the wrong keys, editing and re-editing fields, and
generally doing things imprecisely— the way real people do.

 Do things that should cause error messages, as well as things that should not.

 Ask questions about the product and let them flavor your testing: What will happen if I do this? Can the
product handle that?

 Consider working with more than one tester on more than one scenario. Perform multiple scenarios together.

 Remember to advance the timeline periodically, either using the simulation date or using the system clock.

Oracle
Notes

- Review the oracle notes for the scenario charter that you are working with.
- Review and apply the HICCUPP heuristics.
- For each operation that you witness the product perform, ask yourself how you know that it worked correctly.
- Perform some operations with data chosen to make it easy to tell if the product gave correct output.
- Look out for progressive data corruption or performance degradation. It may be subtle.

Reporting - Make a note of anything strange that happens. If you see a problem, briefly try to reproduce it.
- Make a note of obstacles you encountered in the test process itself.
- Record test ideas that come to you while you are doing this, and pass them along to the test lead.

89

6

PROCHAIN ENTERPRISE SCENARIO TEST CHARTER

UP1: “Check tasks and update”

Theme You are an individual contributor on a project. You have tasks assigned to you. Check your tasks and update them.
Check the status of tasks that gate the ones you are responsible for.

Setup - Assure that your user account(s) are set up with rights to access a project that has many tasks assigned to it.

Activities Go to Tasks panel and filter tasks for ones assigned to you. (Alternatively, filter in other ways such as by
project or by incomplete tasks; and choose a way to sort)

 Select one of the task list views and visit each task. Set the task filter to show, at least: actual start, total
duration, and remaining duration.

 For some tasks, view details, checklists, and attachments.

 Update each task in some way, including:
- No update
- “Mark as Updated”
- Shorten duration remaining
- Set remaining duration to zero; or “Mark as Completed”
- Increase duration remaining
- Provide comments; update checklist
- Undo some updates

 Refilter to see more tasks. Find tasks that feed into or lead from your tasks. Update some of those tasks.

Oracle
Notes

- View updated tasks prior to buffer update to verify they have been updated properly.

- View updated tasks after buffer update to verify they are correct.

- Verify that an updated task says “started” or where applicable verify that it has become a key task or that it
has ceased to be a key task.

- Determine the total number of tasks visible within MS project file, and verify all are visible in Enterprise.

Variations - USER DATA: Restrict the rights of the user account to the maximum degree while still being able to
perform the activity.

- TUG OF WAR: log in as a second user and re-update the same tasks, or cancel updates; log in as the same
user as if you forgot you already had another window open, then make changes in both windows.

- OOPS: update the wrong task and then undo the update; update a task, wait for buffer update, then realize
you screwed up and try to fix it.

- INTERRUPTION: Try to make updates while a buffer update is going on.

- LIFECYCLE: Update a fresh task, update it several more times, advancing the simulation date, then mark it
as completed. Do that for an entire project. Mark all tasks as completed.

90

7

 PROCHAIN ENTERPRISE SCENARIO TEST CHARTER

UP2: “Check status and perform buffer update”

Theme You are a project manager. You need to update your project to prepare your weekly report on project status.

Setup - Log in with a user account set up with project manager rights.

- Buffer consumption for one of the projects should ideally be in the yellow or red.

- At least some of the projects should have multiple project buffers.

Activities View the Standard Projects Status Chart (or custom chart), filter on a set of projects (and turn on name labels).
Start a second session in a window next to the first one (log in as the same user), and filter for the same project
set. Now you have two project status charts that you can compare.

 Pick one project as “yours”. Now, compare status history of your project to others. Explore the other project
details in any way necessary to account for the differences in status.

 View all impact chains for your project, and for some of those tasks:
- view task details
- view task links
- view task load chart

 If other testers are making task updates during your test session, review those changes and modify some of
them, yourself. Otherwise, make at least a few updates of your own.

 Advance the clock by a few days, update buffers on your project and view again the status chart and impact
chains, then advance the clock again by another few days.

 Search for all project tasks that have not been updated in more than a “week” (i.e. since the test began).
Update some of them, then perform another buffer update and view status history for that project.

Oracle
Notes

- View updated tasks prior to buffer update to verify they have been updated properly.

- View updated tasks after buffer update to verify they are correct.

- Verify that an updated task says “started” or where applicable verify that it has become a key task or that it
has ceased to be a key task.

- Determine the total number of tasks visible within MS project file, and verify all are visible in Enterprise.

- Verify the reasonableness of the impact chains, updates to the impact chains, and status history.

Variations - USER DATA: superuser “accidentally” changes your user permissions during the test so that you can no
longer change your own project.

- TUG OF WAR: a second user logs in and checks out the project that you are analyzing, locking it.

- OOPS: update project notes and comments in the wrong project, and try to remove them and apply them to
the right project.

- INTERRUPTION: Periodically click on the printer icon.

91

8

PROCHAIN ENTERPRISE SCENARIO TEST CHARTER

UP3: “Check out a project and rewire dependencies”

Theme You are a project manager. Your project has changed as a result of new technology or new resources, and the
current network needs to be updated.

Setup - Log in with a user account set up with project manager rights.

Activities Pick a project as “yours”. Check out the project file to your local hard drive.

 Update the project network in MSP, do a selection of the following:
- Add new tasks that have starting dates before the present date, some that span the present date,

and some that end in the future.
- Add new tasks that are not on the critical chain, and some that are.
- Delete some tasks.
- Modify data in custom fields.
- Change some of the task linkages.
- Reassign resources; Overload some resources.
- If the project has one endpoint, add a second endpoint; if it has two multiple endpoints, remove

all but one.

 (remember to keep track of the changes you make!)

 Check the project back into PCE, and update buffers.

 View all impact chains for your project, and for the tasks and chains that you modified:
- view task details
- view task links
- view task load chart

Oracle
Notes

- The new network’s info are correctly represented in PCE:
- buffer consumption
- impact chain
- key tasks
- resources and managers

- On check-in PCE should force a buffer update.

Variations - TUG OF WAR: A second user logs in and checks in the project while you are changing it.

- OOPS: Check in the wrong project file, and then try to recover.

- OBJECT LIFECYCLE: Rewire the project several times, interspersing that with UP1 an UP2 scenarios.
Then complete all tasks.

92

OWL Quality Plan

Final

This document incorporates all previous Elvis quality assurance documents. It is an analysis of
the tasks necessary to assure quality for Elvis. It has been reviewed by Tech. Support, and
reflects the concerns of our customers.

This document includes the following sections:

Resource loading and open issues are not included, due to time constraints, and the need for
broader review by management.

93

Risk and Task Correlation

This table relates risk areas to specific quality assurance tasks. Any tasks listed on the right which are not completed
will increase the likelihood of customer dissatisfaction in the associated risk area on the left.

Source Code Usability • Review code for comments, style, formatting, and
comprehensibility.

• Review makefiles for simplicity, documentation, and
consistency.

Performance • Benchmark performance of low level encapsulation and high-
order functionality versus

• OWL 1.0x
• MFC
• Native Windows apps

• Actively solicit Beta tester feedback, design questionnaire,
tabulate/analyze results.

Internationalization • Verify international enabling of the following:
• Stored strings (window titles, diagnostics, etc.)
• Menus items and accelerators
• Cutting and pasting text (clipboard support)
• Printing
• Localized versions of common dialogs
• Status line code
• Input validation (proper uppercasing, etc.)
• filenames/streaming

Design Quality • Inspect code for appropriate use of C++ idioms.
• Participate in discussions to promote:

• Design simplicity
• Backward compatibility
• Appropriate feature set
• Flexibility for future technologies

Documentation Quality
Reference Guide

• Confirm API coverage with latest available header files.
• Check completeness of information for each API, member

function, and data item.
• Review material for overall usability/organization.

Programmer's Guide • Check for missing pieces:
• Versus MFC –
• Versus Petzold (native Windows)
• Versus our provided examples
• Revealed by beta survey feedback
• RTL/Classlib functionality used by Elvis
• C SDK methods compared with Elvis methods

• Review example code versus:
• Code style/readability/comprehensibility
• Compile-time errors/warnings
• Run-time bugs

• Review material for overall usability/organization.

94

Tutorial • Actively solicit feedback from neophyte Elvis users.
• Review example code versus:

• Code style/readability/comprehensibility.
• Compile-time errors/warnings.
• Run-time bugs.

Application size and efficiency • Benchmark Elvis size (DGROUP, .EXE) and performance vs.:
• Elvis 1.0x
• MFC
• Native Windows apps

• Check diagnostics
• Measure effect of varying levels of diagnostics
• Determine optimum/shipping versions of final vs. 'debug'

libraries, re: size/efficiency
• Actively solicit Beta feedback from

• Power Users (substantial/industrial strength apps.)
• Users of C++ that don't tend to write "optimal" code

(e.g., reviewers)
Debugger support • Review comprehensiveness and appropriateness of diagnostics

on a class by class basis
• Verify debugger support for

• Special Elvis needs: entry point/Winmain issues, Elvis
diagnostics, etc.

• Any debugging problems highlighted by Elvis: heavily
templatized code, exceptions, RTTI, linker capacity,
etc.

• Lobby for debugger features needed to enhance Elvis
debugging, e.g., memory mgmt. diagnostics, heap walking
capability, etc.

Portability across platforms,
APIs, and compilers

• Review Elvis source to assure appropriate use of APIs::
• #ifdef or remove Win16-specific calls
• #ifdef full Win32-specific calls
• #ifdef Win16 calls which have better Win32/s equivalents
• Execute test suites to verify that examples and other suites

produce the same output for both static and dynamic libs.
• Investigate the following C++ Compilers for Elvis

compatibility:
• Symantec
• MetaWare
• Microsoft
• CFront

• Execute test suites to verify that examples and other suites
produce appropriate output for the following (using debug
kernel):

• Win 3.1
• Win32s on Win 3.1
• Win32/s on Windows NT
• Win 3.1 on Windows NT
• Win 3.1 on OS/2
• Investigate Elvis compatibility using Mirrors on OS/2.

95

High-order functionality

System level
• Review specifications to assure that the following functionality

is supported
• OLE
• VBX
• GDI
• BWCC
• CTRL3D

• Track support issues for 3rd party:
• Frameworks
• Class libraries (Rogue Wave, etc.)
• Custom control (widget) collections

• Track interoperability issues for Borland products:
• Class libraries (Classlib, RTL iostreams, etc.)
• Engines (Pdox, BOLE2, etc.)
• Internal and external tools (WMonkey, WinSight,

Tarzan, Lucy, CBT, etc.)

Feature level • Verify that examples exist that use features of the 32bit
platforms and that include the following functionality:

• Event response tables to replace DDVTs
• Windows' resources from multiple DLLs;

TLibManager
• Document View model
• OLE DocFile support
• Common dialogs
• Clipboard support
• Floating palette
• Window decorations/gadgets (tool bars/status bars)
• Input validation support
• Printer support
• Use of C++ exceptions
• Menus (including OLE 2.0 support)
• GDI (fonts, brushes, pens, palettes, bitmaps, regions,

icons, cursors, DIBs, complete device context encaps.)
• Virtual listboxes (1,000,000,000 items)
• Edit control without limits
• Outliner/Tree structure listbox
• Edit control that will take multiple fonts
• Print Preview
• Edit control like QPW's
• Gauges, sliders, spin buttons, split panes
• Example(s) showing use of ODAxxxxx

(OwnerDrawAccess APIs)
• Workshop aware custom controls (there's already a

hack on CIS)
• OWL custom control(s) that are usable by 'C SDK'

style applications

96

Low-level API encapsulation • Review message response macros for coverage.

• Verify that all appropriate APIs (i.e., OS features) are
encapsulated.

• Compare item-by-item to MFC and other competitors
• Verify that API functionality is fully accessible and fully

usable.
• Check internal data structures for completeness.
• Verify consistency of Elvis abstractions (i.e., compared to the

native API parameter order, data types, etc.).
• Actively solicit feedback on ease-of-use/friendliness of enabling

layer Elvis API.
Backward compatibility and
upgradeability

• Assure that the BC4 toolset will work with OWL 1.0x
• Assure that OWL 1 apps are upgradeable to Elvis vis-a-vis:

• Documentation (usability testing, beta banging, careful
inhouse review)

• Automated conversion tool works intuitively
• Usability and documentation of design changes
• A comparison of 'major' techniques used in OWL 1.0x

with their current method in Elvis (Are they
unnecessarily different? Are they so much better that
they're worth the pain to switch? Are the above
questions/answers/design decisions fully doc'ed?)

Reliability • Measure code coverage of examples to determine what should
be stressed by new tests.

• Create or collect special test code, including at least one large-
scale omnibus application.

• Create and maintain smoke tests runnable by Integration.
• Build OWL library, after each delivery that has changes in

source or include files, for:*
• 16bit small static
• 16bit medium static
• 16bit large static
• 16bit large DLL
• 32bit flat static
• 32bit flat DLL
• All of the above in diagnostic/debugging mode.

• Build selected models with -Vf, -O2, -xd, -3, -dc and -po:‡
• 16bit large/medium static (switch every other time

between medium and large)
• 16bit large DLL
• 32bit flat fully optimized for speed and/or size (if not

already delivered that way)
• Verify that user built libs are identical to 'delivered' libs (except

paths and time stamps).
• Build all examples in all models listed above and run automated

regressions
• Verify that OWLCVT converts its test suite correctly.

†
 These first 12 will all be delivered to customers, on CD-ROM, the first 6, at least, on diskette.

* The following configurations may also be delivered on CD-ROM, if sufficient testing can be done.

97

Component Breakdown

This is a breakdown of OWL components to a reasonable granularity:

1. TEventHandler
2. TStreamable
3. TModule

3.1. TApplication
3.2. TLibManager
3.3. TResId
3.4. TLibId

4. TDocManager
5. TDocTemplate
6. TDocument

6.1. TFileDocument
6.2. TDocFileDocument

7. TView (TEditSearch and TListBox parentage)
8. TWindow

8.1. TDialog
8.1.1. TInputDialog
8.1.2. TPrinterDialog
8.1.3. TCommonDialog

8.2. TControl
8.2.1. TSScrollBarData
8.2.2. TScrollBar
8.2.3. TGauge
8.2.4. TGroupBox
8.2.5. TStatic
8.2.6. TButton
8.2.7. TListBox

8.3. TMDIClient
8.4. TFrameWindow

8.4.1. TMDIChild
8.4.2. TMDIFrame
8.4.3. TDecoratedFrame
8.4.4. TDecoratedMDIFrame

8.5. TLayoutWindow
8.6. TClipboardViewer
8.7. TKeyboardModeTracker
8.8. TFloatingPalette
8.9. TGadgetWindow

9. TScrollerBase
9.1. TScroller

10. TValidator
11. TPrinter
12. TPrintout
13. TGadget
14. TException
15. TMenu
16. TClipboard

98

17. TGdiBase
17.1. TGDIObject

17.1.1. TRegion
17.1.2. TBitmap
17.1.3. TFont
17.1.4. TPalette
17.1.5. TBrush
17.1.6. TPen

17.2. TIcon
17.3. TCursor
17.4. TDib
17.5. TDC

17.5.1. TWindowDC
17.5.2. TPaintDC
17.5.3. TCreatedDC
17.5.4. TMetafileDC

18. TPoint
19. TRect
20. TMetaFilePict
21. TDropInfo
22. TResponseTableEntry
23. TClipboardFormatIterator
24. TLayoutMetrics
25. Diagnostics support
26. Streaming/object persistence support
27. Error handling & exceptions
28. BOLE2 client/container support

28.1. Elvis support classes
28.2. BOLE2.DLL component
28.3. ObjectPort interface class

29. VBX support classes
30. OWLCVT porting tool

30.1. DDVTs to response table entries conversion
30.2. Class name and other text substitutions

31. Makefiles
31.1. Library source
31.2. Examples

32. Examples
32.1. Large scale (large/complex/high-order feature set)
32.2. Miscellaneous (small size/low-level feature set)
32.3. Non-shipping (but may move into above categories)

33. Documentation

33.1. Programmer's Guide
33.2. Reference Guide
33.3. Tutorial
33.4. Online Doc Files
33.5. Online Help

99

 100

Test Plan

PRODUCT

Issues

COMPANY Send ST Labs information on how dictation is supposed to be done.
HOW2USE.DOC contains no information on dictation protocol.

COMPANY When will user documentation be available—even in half-baked,
development form? It will have to exist in some form months before ship.

COMPANY
Inform ST Labs as to what paper items are included as part of the product.

COMPANY Send ST Labs the second context for installation testing (for step 2).
COMPANY What files represent the selection? We need to know the actual filenames,

in order to transfer testing from one computer to another without
retraining. We understand that we are not to test selections per se.

COMPANY Is the 100mb of disk space needed for swap files during training over and
above the 150mb needed for the sound files and the 50mb needed for the
software? Is the minimum total space needed in order to install and train
300mb?

COMPANY When self-diagnostics are implemented, alert ST Labs and send them
information on how they work.

COMPANY Need CD of standard sound files (male, female)
COMPANY Determine how existing Word macros are to be integrated with speech

aware macros in the same template.

COMPANY Define subset of functionality testing for use in interoperability tests.
COMPANY Define subset of functionality testing for use in hardware compatibility

tests.
COMPANY It would help ST Labs (and COMPANY) do better testing for less money

if they knew more specifically who are the intended users/groups.

COMPANY COMPANY to specify their expectations regarding test documentation
deliverables with respect to each test task.

COMPANY Implement backup procedure for speech-critical data files?

ST Labs Examine the COMPANY bug database for testing insights.
ST Labs &
COMPANY

Confirm with COMPANY that UGC will summarize or manage the beta
testing feedback, beyond reporting specific bugs. (e.g. collecting
information about requested features regarding things like a spelling
mode or vocabulary addition mode)

101

Leads

ST Labs
1st level: Ken
2nd level: Jim

COMPANY
1st level: Andreas
2nd level: Werner

Facilities
We are acquiring 3 new high-end computer systems on which to test.
We have acquired directional headsets for use in training.

Staff
One test lead and two testers (male and female) during the first step.

Schedule
See the bid for details.

Communication & Deliverables

Build Transfer
Builds will be transferred via ftp.stlabs.com
COMPANY will send ST Labs one new build per week.

Status Reporting
Ken will make daily status reports, weekly summary reports, and a project summary
report at the conclusion of the project.
Status reporting will be done via email.

Bug Reporting
Bug reports will be submitted daily via Reachout, directly to the COMPANY DCS
bug database.

Stakeholders

Users (represented by the beta testers)
Andreas (mediates with other sources at COMPANY)
ST Labs (our opinions about the functionality are invited)

Specifications
Functional specification
Windows Interface Guidelines (for Win95 compliance issues)
User Documentation (not available as of 10/4/96)

102

Risk Strategy
Windows Compliance

Description:
As a Windows 95 product, it should conform to
the Win95 logo requirements and interface
guidelines.

ST Labs
• We can do basic Win95 UI conformance

testing and we can review the Win95 logo
requirements and advise you of possible
issues, but there is not enough time in the
plan for comprehensive testing in either
area.

•

General Functionality

• Description:
The product should function in substantial
conformance to the Product Requirements
Specification and user documentation

ST Labs & COMPANY
• exploratory testing
• documentation-based testing
• specification-based testing
• scenario testing
• input domain testing
•

HW Compatibility

Description:
As a product to be deployed in an open
environment, it must be operable with a variety
of popular hardware platforms and peripherals.

Beta tester
• Verify that we have the config. info on each

beta tester.
ST Labs
• (include configurations)
• Microphones
• Sound cards
• Systems

COMPANY
• (include configurations)
•

Installability

Description:
Since the product will be installed by untrained
users, it must be a safe and simple process.
(Installability testing does not include the
training process.)

(Installability testing does not include the
training process.)

ST Labs & COMPANY
• monitor beta testers
• clean install testing
• upgrade install testing
• uninstall testing
• installing a new context

SW Compatibility
Description:
As a product to be deployed in an open
environment, it must be operable with a variety
of popular software products.

ST Labs
• Quick dictation interference test
• Not enough time to test with NT network.
• Applications that may also use

SoundBlaster
• Netscape
• Exchange clients (MSMail, Schedule Plus)
• SAM virus clinic
• Basic interoperability testing (there is not

enough time to do comprehensive testing,
here)
• non-speech-aware dictation clients

• notepad
• Ami Pro

• Word 1

• 1 Changes in strategy from the 9/19 version of the test plan are highlighted in dark gray.

103

 COMPANY
• Quick dictation interference test
• Exchange clients (MSMail, Schedule Plus)
• Defrag. utility
• Macafee virus scanner
• Novell network
• NT network
• Interoperability testing
• non-speech-aware dictation clients
• Wordperfect
• Word
•

System-Level Error Handling

Description: The product should handle
incorrect input or other fault conditions,
especially ones the user is most likely to
encounter, consistently and gracefully.

ST Labs
• Exploratory testing
• Monitor beta testers
• Not enough time for special stress testing

and invalid data testing.

COMPANY
• Error testing
• Stress testing
• Invalid data testing

Data Integrity & Recoverability

Description: Because the data generated and
managed in the course of training and using the
system is so vital to its operation, the system
should recognize and/or allow recovery from
data corruption.

ST Labs
• Report obvious data corruption during

other testing
• There is not enough time to do

recoverability testing.

COMPANY
• Recoverability testing
• bad selection
• delete the files
• replace the files with dummies
• 1. start dictation session using selection; 2.

delete the selection from control module; 3.
reopen or return to dictation.

• bad ARF
• power failure during dictation session
• power failure during training (ARF)
• Test dictionary reorganization at the 64K

word limit.

104

Memory/Mass Storage

Description:
Users may experience failures associated with
the large amount of internal memory and mass
storage required for this product.

• efficiency: how files are stored and cleaned

up.
• reliability: what happens under low memory

or disk space conditions. Memory leaks.
• usability: how do users know when and

how to delete files or optimize their
systems.

ST Labs
• exploratory testing
• documentation-based testing
• documentation testing
• monitor beta testers
• all stress testing is the responsibility of

COMPANY

COMPANY
• stress testing
• simultaneous applications low disk space

and memory configs.
• long dictation sessions
• large number of corrections
• add lots of words in a session

Performance

Description: Because the usability of the system
is strongly dependent on system performance,
this performance should be measured and
monitored.

Performance dimensions:
• during initial acoustic adaptation
• during dictation
• language model adaptation (shortterm &

long-term)
• during further acoustic adaptation
Performance degradation (due to):
• lack of disk space or internal memory
• dictation session duration
• dictation file size
• number of corrections
• size of dictionary

ST Labs
• Qualitative performance testing of

framework applications (MIP, unless
critical)

COMPANY
• Performance testing of speech recognition

technology

Usability

Description: Users may find this product hard to
learn and frustrating to use.

Factors:
• We know very little about the target market

and typical user.
• The product requires that the user adopt a

particular style of dictation.
• In order to achieve accurate recognition, the

product requires substantial investment of
time for training (both inital and ongoing),
and careful attention, by the user, to the
subject matter of their dictation.

• The product consumes immense computing
resources, particularly storage, and requires
the use to perform housekeeping on a
regular basis.

Beta Testers
• The beta testing process our primary

means of assessing how much of a problem
this is.

ST Labs
• Supporting the beta test process and

prefilter or summarize problems.
• Mention in passing any ideas or concerns

about this problem.
• Test the user documentation, tutorial,

README, and online help.

105

106

Y2K Compliance Report

IPAM 6.0

Prepared by

James Bach

8/14/98

107

The IPAM 6.0 product is Y2K compliant.

By IPAM 6.0 we mean the behavior of IPAM 6.0 software, including all embedded third-party
components, operating on the hardware platform we recommend.

Although the manufacturers of some of our embedded third-party components do not claim
that those components are fully Y2K compliant, we have researched their compliance status
and tested them inasmuch as they interact with IPAM 6.0. We have determined that
whatever problems these components might have, they are fully Y2K compliant with respect
to the specific functions and services that IPAM 6.0 uses.

By Y2K compliant, we mean:

1) All operations give consistent results whether dates in the data, or the current system
date, are before or on, or after January 1, 2000.

2) All leap year calculations are correct (February 29, 2000 is a leap day).

3) All dates are properly and unambiguously recognized and presented on input and output
interfaces (screens, reports, files, etc.).

We validated Y2K compliance through a combination of architectural review, supplier
research, and testing.

Architectural Review
Each developer on the IPAM team reviewed his section of the product and reported that he
was aware of no use or occurrence of dates or date functions that would cause IPAM 6.0 not
to comply with our Y2K standard.

Two issues were identified that we will continue to monitor, however:

1) EPO data formats are date-sensitive, so our data production tools will have to be
updated when the EPO upgrades those formats. The EPO has announced upgrade plans,
and we foresee no difficulties here.

2) Over the course of 1999 we will probably upgrade some of our third-party components,
such as SQL Server, and we may have to repeat our compliance review at that time to
assure that no regression has occurred.

108

Supplier Research
We inventoried each of the components that are embedded in IPAM, or upon which it
depends, that are developed by other companies. We contacted each of those companies to
get their statement of Y2K compliance.

Although some of these components are reportedly not fully compliant, our research and
testing indicates that whatever non-compliances exist do not affect the compliance of the
overall IPAM system, since IPAM does not rely on the particular non-compliant portions of
those components.

Component Status Source
Adobe Acrobat
3.0

Compliant http://www.adobe.com/newsfeatures/year2000/prodsupport.html
http://www.adobe.com/newsfeatures/year2000/prodlist.html

Dell Power Edge
6100

Compliant http://www.dell.com/year2000/faq/faq.htm
http://www.dell.com/year2000/products/servers/servers.htm

ERLI Lexiquest Compliant Written statement from ERLI
Fulcrum Compliant http://www.fulcrum.com/english/headlines/Year2000.htm
InstallShield 5.1 Compliant http://www.installshield.com/products/year000.asp
Microsoft IE 4.0 /
Wininet.dll

Compliant
/w SP1
Patch

http://www.microsoft.com/ithome/topics/year2k/product/IE4-32bit.htm

Microsoft NT 4.0 Compliant
w/ Patch >
SP3

http://www.microsoft.com/ithome/topics/year2k/product/WinNt40wks.htm

Microsoft SQL
Server 6.5

Compliant
w/ SP5
Patch

http://www.microsoft.com/ithome/topics/year2k/product/SQL65.htm

Microsoft Visual
C++ 5.0

Compliant
w/ Minor
issues

http://www.microsoft.com/ithome/topics/year2k/product/VisualCC5.htm

Object Space
2.0.1

Compliant http://www.objectspace.com/toolkits/whats%5Fnew.html

Seagate Crystal
Reports 6.0

Compliant
w/ Patch

http://www.seagatesoftware.com/products/bi/library/whitepapers/content.asp

Windows95/98 Compliant http://www.microsoft.com/ithome/topics/year2k

Testing

Y2K compliance can be difficult to validate, so in addition to architectural review and supplier
research, we also designed and executed a Y2K compliance test process. Areas of IPAM
functionality which involve dates were exercised in various ways using critical date values
for both data and the system clock. Areas of IPAM functionality which do not involve dates
were sanity checked (about 8 total hours of functional testing) in case there was some
hidden date dependency.

The remainder of this report documents the specific test strategy and results.

Our test approach is risk-based. That means we first imagine the kinds of important
problems that could occur in our system, then we focus our testing effort on revealing those
problems.

Risk Analysis Process
Our architectural review and supplier research gave us our first inkling of where problem

109

areas might be. We also used the problem catalog in an article by James Bach and Mike
Powers, Testing in a Year 2000 Project, (www.year2000.com) as a source of ideas for
potential problems.

Basically, we looked for any features in our product that stored or manipulated dates, and
focused our efforts there.

Potential Risks
Our analysis gave use no specific reason to believe that there would be any Y2K
compliance problems. However, if there were indeed such problems, they would most likely
fall into one of these categories:

1) Incorrect search results for date-related searches.

2) Incorrect display of dates in IPAM Workbench window or Abstract window.

3) Incorrect handling and display of dates in the Patent Aging Report.

4) Incorrect handling and storage of dates in Corporate Document Metadata.

5) Failures related to the date of server system clock. These failures include “rollover”
problems, whereby the transition across a critical date triggers a failure, as well as other
failures caused by the clock being set on or after a critical date.

6) Failures related to the date of client system clock. (see note, above)

7) Failures related to dates in data. These failures include manipulation of dates before
and after critical dates.

8) Failures related to critical dates. Y2K compliance failures are likely to be correlated
with the following dates within test data:

• September 9, 1999
• December 31, 1999
• January 1, 2000
• January 3, 2000
• February 28, 2000
• February 29, 2000
• March 1, 2000
• March 31, 2000
• December 31, 2000
• February 28, 2001
• February 29, 2004

Note: For the system clock, we believe there is only one critical date: January 1, 2000.

9) Failures related to non-compliant platform components. It’s possible that a
particular computer, network card, or other component could influence the operation of
IPAM 6.0 if it is not itself Y2K compliant.

10) Database corruption. It’s possible that Y2K non-compliance in IPAM 6.0 or SQL Server
could corrupt the patent database.

11) Failures related to specific combinations of any of the factors, above.

110

Unknown Risks
A generic risk with risk-based testing is that we may overlook some important problem area.
Thus, we will also do some testing for failures that may occur in functionality that has
nothing to do with dates due to some hidden dependency on a component that is sensitive
to dates.

Problem Detection
During the course of testing, we detected errors in the following ways:

• Any test result containing a date with a year prior to 1972 would be suspect, as test
data contained patents only after 1971.

• Testers were alert to any instances of two-digit date display that might indicate
underlying date ambiguity.

• For most search tests, testers predicted the correct number of search hits and
compared those to test results. For some searches, the returned patent numbers
were verified.

• Due to the nature of IPAM, most data corruption is readily detectable through the
normal course of group management and search testing. However, it is still possible
that the database could be corrupted in a way that we could not detect.

• Each tester is familiar with the way the product should work and was alert to any
obvious problems or inconsistencies in product functionality, including crashes,
hangs, or anything that didn’t meet expectation.

Level of Effort
Two testers spent about 3 work days, each, performing this process. Three other testers
also assisted for one day during phase 2 testing, detailed below. Date engineering required
an additional 2 days to create dummy test data.

Tools
The search tests were automated using Perl and are repeatable on demand. All other tests
were completed manually with human verification.

Platforms
The server hardware platform was the Dell Power Edge 6100, with a clean version of the
IPAM 6.0 server installed. No extraneous applications were running run during the Year
2000 Compliance test process.

The client test platforms were 4 machines running Windows 95 or NT and the IPAM 6.0
client.

111

Process

Phase 1

Rolled the system clocks forward to 1/1/2000 and executed a sanity check on the test
platforms without running IPAM 6.0 at all. (1 hour).

Phase 2

Executed a general functionality test on all major areas of IPAM 6.0 with the system clock at
1/1/2006, but without any aged data.

Phase 3

Executed automated and manual tests on designated risky functional areas (risks 1 through
4, above) using an aged data set containing 252 various patents and 10 documents with a
mixture of 20th and 21st century dates. Every date in the data set was increased by twenty
years to ensure that dates in the set data occurred before, during, and after January 1,
2000. Also, some of the dates in the dummy data were set to a random selection of critical
dates.

Phase 4

Set the server and client clocks to 11:55 pm on December 31, 1999, and allowed rollover to
January 1, 2000, then executed the automated search tests and a few other ad hoc tests.
We then rebooted the server and client machines and repeated that process.

We found no Y2K compliance problems at all, in the behavior of IPAM 6.0, during the course of our
tests. This is consistent with our architectural review and the specific issues uncovered by our supplier
research.

Although no testing process can prove the absence of bugs, our testing gives us reasonable confidence
that there are no important (meaning high probability and/or high impact) Y2K compliance problems in
IPAM 6.0.

112

This table summarizes which test sets were conducted with what kind of aged data.

 Pre-2000 Post-2000 Span 2000 Leap Year
Aging Report
Search
Corporate
Non-search

Each table, below is a list of specific, planned test cases conducted in each functional area
called out in our risk analysis. In addition to these, numerous ad hoc tests were also
performed.

Patent Aging Report Test Cases (phase 2 and 3)

Patents Report Type Expiration Date Groups to
Include

All Text Before No Subgroups
All Text Between 1999-2000 Some Subgroups
All Text Between 2000-2000 All Subgroups
All Excel Before Some Subgroups
All Excel Between 1999-2000 All Subgroups
All Excel Between 2000-2000 No Subgroups
All Graph Before All Subgroups
All Graph Between 1999-2000 No Subgroups
All Graph Between 2000-2000 Some Subgroups
EPO Text Before Some Subgroups
EPO Text Between 1999-2000 All Subgroups
EPO Text Between 2000-2000 Some Subgroups
EPO Excel Before All Subgroups
EPO Excel Between 1999-2000 No Subgroups
EPO Excel Between 2000-2000 All Subgroups
EPO Graph Before No Subgroups
EPO Graph Between 1999-2000 Some Subgroups
EPO Graph Between 2000-2000 No Subgroups
US Text Before All Subgroups
US Text Between 1999-2000 Some Subgroups
US Text Between 2000-2000 All Subgroups
US Excel Before No Subgroups
US Excel Between 1999-2000 All Subgroups
US Excel Between 2000-2000 No Subgroups
US Graph Before Some Subgroups
US Graph Between 1999-2000 No Subgroups
US Graph Between 2000-2000 Some Subgroups

113

Search Test Cases (3 and 4)

Patent Type Issue Date Filing Date
All After Between 1999-2000
All After N/A
All Before After
All Before N/A
All Between 1999-2000 Between 2000-2000
All Between 1999-2000 N/A
All Between 2000-2000 N/A
All Between 2000-2000 On
All N/A After
All N/A Before
All N/A Between 1999-2000
All N/A Between 2000-2000
All N/A On
All On Before
All On N/A
EP-A After Between 1999-2000
EP-A After N/A
EP-A Before After
EP-A Before N/A
EP-A Between 1999-2000 Between 2000-2000
EP-A Between 1999-2000 N/A
EP-A Between 2000-2000 N/A
EP-A Between 2000-2000 On
EP-A N/A After
EP-A N/A Before
EP-A N/A Between 1999-2000
EP-A N/A Between 2000-2000
EP-A N/A On
EP-A On Before
EP-A On N/A
EP-B After Between 1999-2000
EP-B After N/A
EP-B Before After
EP-B Before N/A
EP-B Between 1999-2000 Between 2000-2000
EP-B Between 1999-2000 N/A
EP-B Between 2000-2000 N/A
EP-B Between 2000-2000 On
EP-B N/A After
EP-B N/A Before
EP-B N/A Between 1999-2000
EP-B N/A Between 2000-2000
EP-B N/A On
EP-B On Before
EP-B On N/A
PCT After Between 1999-2000
PCT After N/A
PCT Before After
PCT Before N/A
PCT Between 1999-2000 Between 2000-2000
PCT Between 1999-2000 N/A

114

PCT Between 2000-2000 N/A
PCT Between 2000-2000 On
PCT N/A After
PCT N/A Before
PCT N/A Between 1999-2000
PCT N/A Between 2000-2000
PCT N/A On
PCT On Before
PCT On N/A
US After Between 1999-2000
US After N/A
US Before After
US Before N/A
US Between 1999-2000 Between 2000-2000
US Between 1999-2000 N/A
US Between 2000-2000 N/A
US Between 2000-2000 On
US N/A After
US N/A Before
US N/A Between 1999-2000
US N/A Between 2000-2000
US N/A On
yUS On Before
US On N/A

Corporate Documents, Multiple Categories (phase 3 and 4)

Disclosure Date Publication Date
After Between 1999-2000
After N/A
Before After
Before N/A
Between 1999-2000 Between 2000-2000
Between 1999-2000 N/A
Between 2000-2000 N/A
Between 2000-2000 On
N/A After
N/A Before
N/A Between 1999-2000
N/A Between 2000-2000
N/A On
On Before
On N/A

Miscellaneous Search Tests (phase 2, 3 and 4)

115

 116

Spot Check Test Report

Prepared by James Bach, Principal Consultant, Satisfice, Inc. 8/14/11

1. Overview

This report describes one day of a paired exploratory survey of the Multi-Phasic Invigorator and
Workstation. This testing was intended to provide a spot check of the formal testing already routinely
performed on this project. The form of testing we used is routinely applied in court proceedings and
occasionally by 3rd-party auditors for this purpose.

Overall, we found that there are important instabilities in the product, some of which could impair
patient safety; many of which would pose a business risk for product recall.

The product has new capabilities since August, but it has not advanced much in terms of stability since
then. The nature of the problems we found, and the ease with which we found them, suggest that these
are not just simple and unrelated mistakes. It is my opinion that:

 The product has not yet been competently tested (or if it has been tested, many obvious
problems have not been reported or fixed).

 The developers are probably not systematically anticipating the conditions and orientations and
combinations of conditions that product may encounter in the field. Error handling is generally
weak and brittle. It may be that the developers are too rushed for methodical design and
implementation.

 The requirements are probably not systematically being reviewed and tested by people with
good competency in English. (e.g. the “Pulse Transmitter” checkbox works in a manner that is
exactly opposite to that specified in the requirements; error messages are not clearly written.)

These are fixable issues. I recommend:

 Pair up the developers and testers periodically for intensive exploratory testing and fixing
sessions lasting at least one full day, or more.

 Require the testers to be continuously on guard for anomalies of any kind, regardless of the test
protocol they are following at any given moment. Testers should be encouraged to use their
initiative, vary their use of the product, and speak up about what they see. Do not postpone the
discovery or reporting of any defect, even small ones—or else they will build up and the
processes creating these defects will not be corrected.

 The requirements should be reviewed by testers who are fluent in English.

 The developers should carefully diagram and analyze the state model of the product, and re-
design the code as necessary to assure that it faithfully implements that state model.

 Unit-level testing by the developers, and systematic code inspection, as per FDA guidance.

117

2. Test Process

The test team consisted of consulting tester James Bach (who led the testing) and Satisfice, Inc. intern
Oliver Bach.

The test session itself spanned about seven hours, most of which consisted of problem investigation.
Finding the problems listed below took only about two hours of that time.

The process we used was a paired exploratory survey (PES). This means two testers working on the same
product at the same time to discover and examine the primary features and workflows of the product
while evaluating them for basic capability and stability. One tester “plays” while the other leads,
organizes and records the work. A PES session is a good way to find a lot of problems quickly. I have
used this method on court cases and other consulting assignments over the years to evaluate the
quality of testing. The process is similar to that published by Microsoft as the General Functionality and
Stability Test Procedure (1999).

In this method of testing, we walk through the features of the product that are readily accessible,
learning about them, studying their states and interactions, while continuously applying consistency
heuristics as test oracles in our search for bugs. Ten such heuristics in particular are on our minds. These
ten have been published as the “HICCUPP” model in the Rapid Software Testing methodology. (See
http://www.satisfice.com/rst.pdf for more on that.)

We filmed most of the testing that we did, and delivered those videos to Antoine Rubicam.

We did not test the entire product during our one-day session. However, we sampled the product
broadly and deeply enough to get a good feel for its quality.

3. Test Results

The severe problems we found were as follows:

1. System crash after switching probes. If the orientation mode is improperly configured with the
circular probe such that there are no flip-flop mode cathodes active, and the probe is then
switched to “dissipated”, the application will crash at the end of the very next exfoliation
performed. (This is related to problems #6 and #7)

Risk: delay of procedure, loss of user confidence, potential violation of essential performance
standard of IEC60601, product recall

Implications: The developer may not have anticipated all the necessary code modifications
when dissipated mode probe support was added. Testers may not be doing systematic probe
swap testing.

2. No error displayed after ion transmitter failure during exfoliation. By pressing the start button
more than once in quick succession after an ion transmitter error is cleared, an exfoliation may
begin even though the transmitter was not in the correct pulse mode. The system is now in a
weird state. After that point, manually stopping the transmitter, changing the pulse rate, or
cutting power to the transmitter will not result in any error message being displayed.

118

http://www.satisfice.com/rst.pdf

Risk: patient death from skin abrasions formed due to unintentionally intensified exfoliation,
loss of user confidence, violation of IEC60601-1-8 and 60601-1-6, product recall

Implications: There seems to be a timing issue with error handling. The product acts differently
when buttons are pressed quickly than when buttons are pressed slowly. Testers may not be
varying their pace of use during testing.

3. Error message that SHOULD put system in safe mode does NOT. Ion transmitter error
messages can be ignored (e.g. "Exfoliation stopped. Ion flow is not high!"). After two or three
presses of the start button, exfoliation will begin even though multiple error messages are still
on the screen.

Risk: Requirements violation, violation of IEC 60601-1-8 and 60601-1-6, product recall.

Implications: Suggests that the testers may not be concerned with usability problems.

4. Can start exfoliation while exit menu is active (and subsequently exit during exfoliation). It
should not be possible to press the exit button while exfoliating. However, if you press the exit
button before exfoliating and the exit menu appears, the start button has not been disabled,
and the exfoliation will begin with the exit menu active. The user may then exit.

Risk: unintentional exfoliation, loss of user confidence, violation of IEC60601-1-6, product recall

Implications: Problems like this are why a careful review of the product state model and re-
design of the code would be a good idea. The bug itself is not likely to cause trouble, but the
fact that this bug exists suggests that many more similar bugs also exist in the product.

5. Probe menu freezes up after visiting settings screen (and at other apparently random times).
Going to settings screen, then returning, locks the probe mode menu until an exfoliation is
started, at which point the probe mode frees up again. We found that the menu may also lock
at apparently random intervals.

Risk: loss of user confidence

Implications: Indicates state model confusion; variables not properly initialized or re-initialized.

6. Partial system freeze after orientation mode failure. When in orientation mode with no
cathodes selected for flip-flop, an exfoliation session can be started, which is allowed to
proceed until flip-flop phase is activated. At that point, an error message displays and system is
locked with "orientation and flip-flop" modes both selected on the exfoliation mode menu. The
settings and exit buttons are also inoperative at that point. (This state can also be created by
switching probes. It is related to problems #1 and #7.)

Risk: Procedure delay, loss of user confidence, product recall

Implications: Indicates state model confusion; variables not properly initialized or re-initialized.

7. No error is displayed when orientation session begins and flip-flop cathodes are not activated.
When in orientation mode with no cathodes selected for flip-flop, an exfoliation session can be
started. Instead, an error message should be generated. (This is related to problems #1 and #6.)

119

Risk: loss of user confidence, creates opportunity for worse problems

Implications: Suggests the need for a deeper analysis of required error handling. Testers may
not be reviewing error handling behaviors.

8. Cathode 10 active in standing mode after deactivating all cathodes in flip-flop mode. De-
selection of cathodes in flip-flop or standing mode should cause de-selection of corresponding
cathodes in the other mode. However, de-selecting all flip-flop cathodes leaves cathode 10 still
active in standing mode. It’s easy to miss that cathode 10 is still active.

Risk: creates opportunity for confusion, possible inadvertent exfoliation with cathode 10,
possible violation of IEC60601-1-6

Implications: Suggests that the testers may not be concerned with usability problems.

9. Error message box can be shown off-screen. Error message boxes display at the location where
the previous box was dragged. This memory effect means that a message box may be dragged
to the side, or even off the screen, and thus the next occurrence of an error may be missed by
the operator.

Risk: creates opportunity for confusion, possible for operator to miss an error, violation of
IEC60601-1-8 and 60601-1-6, when combined with bug #3, it could result in potential harm to
the patient.

Implications: Suggests that the testers may not be concerned with usability problems.

10. Behavior of the "Pulse Transmitter" checkbox is the opposite of that specified in the FRS. The
FRS states "By selecting Pulse Transmitter checkbox application shall allow to perform
exfoliation session with manual controlled transmitter.” However, it is actually de-selecting the
checkbox which allows manual control.

Risk: business risk of failing an audit. It is potentially dangerous, as well as illegal, for the
product to behave in a manner that is the opposite of its Design Inputs and Instructions for Use.

Implications: This is a common and understandable problem in cases where the specifications
are written by someone not fluent in English. It is vital, however, to word requirements
precisely and to test the product against them. Bear in mind that the FDA personnel probably
will be native English-speakers.

11. Setting power to zero on an cathode does not cause the power to be less than 10 watts.
According to the log file, the power is well above the standard for “0” laid out in IEC60601.
(Also, displaying a “---“instead of “0” does not get around the requirement laid out in the
standard. This is true not only because it violates the spirit of the standard, but also because the
target value is displayed as “0” and the log file lists it as “0”.)

Risk: violation of IEC60601, product recall

Implications: The testers may not be familiar with the requirements of IEC60601. They may not
be testing at zero power because the formal test protocol does not require it.

Here are the lower severity problems we found:

120

12. "Time allocated for cathode 10 is too short" message displays when time is rapidly dialed
down. The message only displays when the time is dialled down rapidly, and we were not able
to get it to display for any cathode other than 10.

13. Pressing ctrl key from exit menu causes immediate exit.

14. Exfoliation tones mysteriously change when only one cathode is active in standing mode. The
exfoliation tone for flip-flop mode is sounded for standing mode when all but one cathode is de-
activated.

15. Power can be set to zero during exfoliation without cancelling exfoliation. Since an exfoliation
cannot be started without at least one cathode set to a power greater than 0, and since de-
activating an cathode during an exfoliation session prevents it from being re-activated, it is
inconsistent to allow cathodes to be set to “0” power during an exfoliation unless they are
subsequently de-activated.

16. Power can be set to 1, which is unstable. Does it make sense to allow a power level of 1? The
display keeps flickering between 1 and “---“.

17. If orientation is used, the user may inadvertently fail to set temperature limit on one of the
exfoliation modes. Flip-flop and standing have different temperature limit settings. In our
testing, we found it difficult to remember to set the limit on both modes before beginning the
exfoliation session. This is a potential usability issue.

18. "Error-flow in standby mode should be low" message displayed at the same time as
"Exfoliation stopped. Transmitter flow is not high!" This is a confusing pair of messages, which
seem to require that the transmitter be in low flow and high flow at the same time.

19. Error messages stack on top of each other. If you press start with 0 power more than once,
then more than one error message is displayed. As many times as you press, more error
messages are displayed.

121

 122

OEW Case Tool
QA Analysis, 8/26/94

Summary
OEW is a complex application that is fairly stable, although not up to our standards for fit and

finish.

There are no existing tests for the product, only a rudimentary test outline that will need to be

translated from German. One full-time and one part-time tester work on the project. Those testers

are neither trained nor particularly experienced. The vendor’s primary strategy for quality

assurance is a fairly extensive beta test program.

We suggest a minimum of one tester to validate the changes to OEW. We also

suggest that the developer of OEW work onsite with our test team under our

supervision.

Feature Analysis

Complexity This is a complex application.

8 interesting menus

68 interesting menu items

40 obvious dialogs

5 kinds of windows

27 buttons on the speedbar

120 thousand lines of code

Functionality This application has substantial functionality.

Code Generation

Code Parsing

Code Diagramming

Build Invocation

Volatility The changes in the codebase will be minor.

Bug fixes.

Smallish U.I. tweaks.

Disable support for various things, including build invocation.

Operability The application is ready for testing immediately.

It operates like a late beta or shipping application.

The proposed changes will be unlikely to destabilize the app.

Customers We expect that large codebases will be generated, parsed or

diagrammed with this application.

About 25% of our beta testers have codebases larger than 200,000 lines.

The parsing capability will encourage customers to import their apps.

123

Risk Analysis

 The risk of catastrophes occurring due to changes in the codebase is small.

 The risk that the much larger and probably more demanding Borland market will be dissatisfied with

OEW is significant.

QA Strategies
 Get this into beta 2, or send a special beta 2B to our testers who have large codebases.

 Find beta bangers with large codebases and have them import into OEW.

 Perform rudimentary performance analysis with big codebases.

 Bring the existing OEW testers from Germany onsite.

 Hire a dedicated OEW tester (contractor, perhaps).

 Participate in a doc. and help review.

 Translate existing test outline from German.

 Perform at least one round of compatibility testing.

Schedule
 The QA schedule will track the development schedule.

 It may take a little while to recruit a tester.

Issues

 Are there international QA issues?

124

How To Talk About Software Testing
By James Bach, Satisfice, Inc. (v1.1)

Managers, developers, and even testers often have questions about testing that need answers:

• “Why didn’t we find that bug before we released?”

• “Why don’t we do prevention instead of testing?”

• “Testing would be better if we used {X} practice, just like {successful company Y}!”

• “Why can’t we automate all the testing?”

• “Why does testing take so long? How much testing is enough?”

• “Why do we need dedicated testers? Why don’t we just get user feedback instead of testing?

Why can’t developers do the testing? Why don’t we just get everyone to test?”

Questions like these often arise when there is trouble in the organization that seems to come from

testing or to surround the testing process. But to deal with these questions you first must understand

what testing is and what it isn’t. Then you must understand the parts of testing, how they relate

together, and what words describe them. Only then can you productively talk about testing without

being crippled by unhelpful concepts that would otherwise be embedded in your speech.

This document has two sections:

• Testing Basics (stuff you need to know about testing to talk about it coherently)

• Testing Conversation Patterns (kinds of conversations you might have about testing)

Testing Basics

A powerful definition of testing is the process of evaluating a product by learning about it through

experiencing, exploring, and experimenting. That means it’s not the same as review, inspection, or

“quality assurance” although it plays a role in those things.

By “evaluate” I mean primarily identifying anything about the product that is potentially troublesome.

Another word for potential trouble is risk. Testing is therefore a process of analyzing business risk

associated with the product (from now on let’s just call that “product risk”).

1. The essence of testing is to believe in the existence of trouble and to eagerly seek it.
Testing is an inherently skeptical process. The essence of testing largely lies in how you think about what

you see. A tester should be negatively biased (because it is usually better to think you see a problem and

be wrong, than to think there is no problem and be wrong). When a competent tester sees a product

that appears at first glance to work, his reaction is not “it works!” but rather that “it’s possible that it’s

good enough to release, but it’s also possible that there are serious problems that haven’t yet been

revealed.” Only when sufficient testing has been done (meaning sufficient coverage with sufficiently

125

sensitive oracles relative to business risk) can a tester offer a well-founded opinion of the status of the

product.

Testing never “proves” that the product fulfills its requirements. This is part of a profound truth about

science in general: you can disprove a theory about the state of the natural world based on one single

fact, but you can never prove that the theory is true, because that would require collecting every

possible fact. Consider a barrel of apples. You can pick one apple and see that it is rotten, and from that

you could conclude that the barrel fails to fulfill the requirements of containing only fresh apples. But if

that one apple is fresh, you could not conclude that all the other ones are also fresh.

The testing process does not determine that the product is “done” or ready to be released. In other

words, there is no way to establish unambiguous, algorithmic, or mathematical criteria that can dictate a

good and responsible business decision about releasing software. Instead testing uncovers the data

needed for management (meaning whoever has responsibility to make the release decision) to make a

sufficiently informed decision to release. Deploying software is always a complex business decision

rather than a simple technical one.

The testing process is all about learning. Anyone who is not learning while testing is also not testing. We

seek to learn the status of the product, of course, but we also seek to learn how we might be fooled into

overlooking important problems. Good testing requires continual refreshment of our means of detecting

trouble, based in part on studying the bugs that were found only after the product was released.

The mission of testing is to inform stakeholders. Specifically, testing exists to provide stakeholders with

the right information to make sufficiently well-informed decisions about the product. The testing

process itself does not and cannot determine if the product is “good enough to release,” since that is

strictly a stakeholder decision.

2. A test is an experiment performed by a person on a product.
Consider a “play” in the theatre. A script for a play is often called a play, but the real play is the

performance itself, with the actors on the stage. People may even speak of the “play” as a set of

performances (e.g. “the play ran for four weeks on Broadway”).

Think of a test in the same way. We can informally speak of a test specification as a “test,” but try to

remember at all times that the test specification never fully specifies the actual test that is performed,

because that involves human attention and judgment. We can also speak of the “same test” over time

even though the test is evolving and perhaps never performed exactly the same way twice.

Why this matters: When we fail to understand and respect the essence of

testing, management and other outsiders to the process will have inflated

expectations about what testing can provide and may use testing as a

scapegoat for problems that originate elsewhere.

126

Just be aware that, in truth, a “test” isn’t really a test except in the moment it is being performed. That’s

when it becomes real, for better (when a skilled and motivated tester is performing it) or for worse

(when an incompetent or inattentive tester is at the wheel). Many tests begin as open questions and

sketches and become more defined and systematic with time. Testing is inherently exploratory, just like

the development process for the product itself. This is even true for tests that employ automated

elements, since that automation must be prototyped and debugged and maintained.

3. The motivation for testing is risk.
If there is no product risk, then there is no need to test. Testing begins with a sort of faith that product

risk exists; usually stemming from various risk indicators, such as the existence of complexity and the

potential for harm if the code behaves badly. As testing proceeds, and finds problems or fails to find

them, faith about risk becomes replaced with fact-based reasoning about risk, until that very process of

reasoning leads testers to the conclusion that enough is known to allow management to make

reasonably informed decisions about the product.

The ability to think systematically about risk is therefore a key to professional testing.

4. Anyone who does testing is, at that moment, a tester.
Doing testing well requires certain intellectual, social, and technical skills, but-- just as with cooking--

literally anyone can do testing to some degree, and literally anyone can contribute to an excellent

testing process.

Why this matters: This definition frames testing as an inherently human

process that can be aided by tools but not fully automated. Defining it that way

helps defend the testing process against attempts to oversimplify and dismiss it.

Why this matters: Although risk is fundamental to testing, few people are

trained to think about risk. This leads to haphazard test strategy and wasted

effort. Meanwhile, any time you design a test you must be able to answer this

question: why does this test need to exist? If your answer is “because the

product might not work” that’s not good enough. What specifically won’t work?

In what way might it not work? Is that sort of failure likely? Is this the only test

that covers the product? What specific value does this specific test bring?

127

Some people specialize in testing and are full-time testers. But for the purposes of this document, the

word “tester” applies to anyone-- developer, manager, etc.-- who is currently engaged in an attempt to

test a product.

It’s worth distinguishing between two kinds of testers: responsible and supporting. A responsible tester

is any tester who is accountable for the quality of his own work. In other words, responsible testers

normally work without supervision. Responsible testers also decide on their own tactics and techniques,

and make their own decisions about when to stop testing. Supporting testers are not expected to

control their own test strategy. They include anyone who drops in to help the testing process or any

other tester who works only under the direct supervision of a test lead. Often the task of writing formal

bug reports is reserved for responsible testers.

5. Testing is not verification; testing includes verification.
You can only verify something that has a definite truth value: true or false. But the quality of a product

does not have a definite truth value, partly because “quality” is a multidimensional concept that involves

subjective tradeoffs. You can verify that a movie has received 46.7 on the “tomatometer,” but you

cannot verify that the movie is actually worse than one that received 53.2 from the same website. Just

as people can reasonably disagree about the quality of movies, people disagree about the quality of

software. In that sense you can assess quality-- you can come to a fact-based judgment of it-- but not

verify it. Quality cannot meaningfully be reduced to a single dimension. For instance, I can verify that,

given “2+2” as input, just after startup, a particular calculator at a particular time displayed a “4” on its

screen. But this is not the same as verifying that “addition works.” Another way of saying this is that

verification establishes facts, but no set of set of facts with finite coverage is logically equivalent to a

sweeping generalization.

In Rapid Software Testing methodology, we call verification “checking,” which is short for “fact

checking.” But testing is bigger than checking. Testing does make use of verification as a tactic, but

testing also involves critical thinking, tacit knowledge, and social competence. Testing involves hunches.

Testing is a process of sensemaking and theory-building based on the facts that are observed. This is far

more than simple verification.

Why this matters: For many years, testing was handled mostly by specialists,

who had the time and focus to learn deep truths about testing. But with the

advent of “Agile,” many people now get involved with testing without making it

their specialty and without having the time to devote to planning or self-

improvement as a tester. That means it is especially important to discuss and

review the essentials of testing explicitly, as an organization, rather than

assuming that testing will automatically be performed to a professional

standard by people who are steeped in their trade.

128

Unlike verification, testing does attempt to make reasonable generalizations— leaps of judgment—

grounded in facts, that management can use as one basis for decisions. Testing results in an assessment

of the quality of a product.

6. Performing tests is just one part of testing.
Any time you are experimenting and exploring a product for the purpose of discovering bugs (which

includes using automation to help you do that) you are performing tests.

But here are some things that are also testing: conferring with the team, designing tests, developing

data sets, developing tools, using tools to create and perform checks, studying specifications, writing

bug reports, tracking bugs, studying the technology used to create the product, learning about users,

planning, etc. Any of these activities are testing when performed for the purposes of fulfilling the

mission of testing.

In other words, testing is a bigger process than merely performing tests, and you can’t just point to a set

of test cases and honestly say “that’s the testing, right there.” It isn’t. Testing is the entirety of your

process that delivers the value of the testing mission.

7. A responsible tester must think differently than a developer.
A developer must think of one good way to make things work; a tester strives to imagine 999 ways it

could fail. This should not be characterized as “constructive vs. destructive” since the tester is in no way

Why this matters: Verification is often easy. Testing is hard. It can be seductive

to perform fact checks instead of tests because checks involve no judgment and

therefore no possibility of anyone disputing your judgment. They are safe and

objective. But that very quality also makes them systematically shallow and

blinkered. A strategy focused solely on verification would fail to notice big

product risks that any reasonable human tester should detect and investigate.

Why this matters: Good testing requires that testers have the time and

resources to learn, model, design, record, collect, discuss, etc. The assumption

that the process consists simply of writing test cases and then running them is

not just wrong but terribly damaging. It forces testers to do rushed, bad work

that results only in shallow testing that will miss important bugs.

129

destroying anything (except maybe our illusions of confidence). The distinction is more “optimistic vs.

pessimistic” or “imperative (do this!) vs. hypothetical (what if?)”

So, testers live in a world of many hypothetical failures, almost all of which don’t happen, but many of

which we are obliged to investigate-- because some happen. To a developer’s eye, testing can look like

an endless, fruitless loop. Where does it ever end? In fact, a major aspect of skilled testing is knowing

how to make a case that it is time to stop testing; this is rarely a simple determination.

One way to put it is that development feels like a convergent task, moving toward completion, whereas

testing seems to push in the opposite direction: opening up new possibilities and looking into each one,

which leads to even more possibilities, and so on. For the same person to think like a developer and like

a tester at the same time is quite difficult, even painful, requiring extraordinary discipline. This is not to

say that developers should not include unit level checks in their code. Those are important. But unit

“tests” are not really tests, they are low-level fact checks, and bear little resemblance to the skeptical

and creative process of testing.

Testers and developers necessarily work by different incentives: the thrill of building something

obviously good vs. the thrill of discovering hidden flaws. When they work together, they can build

something that truly is good and doesn’t just seem that way at first blush.

Coding is a useful skill for testers, but not all testers should be coders. Testers who are coders often

focus on writing tools to help testing instead of directly and interactively testing the product. Testing

benefit from diversity, including all forms of diversity, but especially cognitive diversity represented by

some people who think more like developers and understand technology more deeply, as well as some

people who focus on the behavior and look of the product and understand the users more deeply. It’s

good to have some people who want to “get things done” (even if the work is not the best it could be)

and others who want to “do the job right” (even if it takes longer to get things done).

8. The five parts of a test are: tester, procedure, coverage, oracles, and the motivating

risk.

• Tester. There cannot be a test without a tester. The tester is the human being who takes

responsibility for the development, operation, and maintenance of the test. The tester is

not just a steward for the test, the tester is part of the test. The tester’s judgment and

attentiveness are a vital part of any good test. A corollary to this is that when a tester

Why this matters: The reason people specialize as testers is to allow them to

focus on problem discovery without being hindered by biases that come from

hoping that the product will work, or believing that it cannot fail, or being too

tired from making it work to put the required energy in to detecting failure. For

any non-specialist who occasionally does testing, these are dangerous biases

that must be managed.

130

gives a test to another tester, that changes the test. Two competent testers can follow

the same formal test procedure, but they will not be performing exactly the same test,

because each test depends on a variety of human factors to make it work. Another

corollary to this principle is that giving a good test procedure to a low-skilled tester will

diminish or even destroy the value of that test; whereas giving a poor test procedure to

an excellent tester may result is good testing getting done, because that skilled tester

will automatically correct the design or compensate in some other way.

• Procedure. A procedure is the way that a test is performed. The procedure may or may

not be written down, but it must exist, or there won’t be a test. Even if a procedure is

written down, the parts performed by a tester (as opposed to that done by tools) will

always involve unwritten elements supplied automatically by the know-how of the

tester. If tools are used to perform a test, then the tools are part of the test procedure.

• Coverage. Coverage is what was tested. There are many kinds of coverage, but among

them are these broad categories: structure, function, data, interfaces, platform,

operations, and timing. You need to know, at least in broad terms, what your tests cover

and what they don’t cover. Code coverage is one kind of structural coverage, and there

are tools which can measure that. Data coverage, by contrast, is not so easily measured,

since there are so many kinds of data and they can be combined in so many ways.

Measuring that kind of coverage would require keeping track of all the data you test

with and comparing that with all the data you could have used.

All coverage is based on a model, by which I mean some particular way of describing,

depicting, or conceiving of the product; a model is a representation of the thing it

models. For instance, code coverage is based on a model of code, which is usually the

human readable source code itself. The usual form that models take when discussing

test coverage is a list or an outline. A model of browsers for the purposes of browser

coverage would be a list of browsers and a list of relevant features of browsers.

You could say that a model provides a perspective on the product, and to find every

important bug we need to test from different perspectives.

A test condition is defined as something about the product that could be examined

during a test, or that could influence the outcome of a test. Basically, a test condition is

something that could be tested. If you model the product in some way, such as listing all

its error messages, then each error message is a test condition. If you have a list of

buttons that can be pushed, then each button is a test condition. Every feature of the

product is a test condition, and so is every line of code. We cannot test all possible

conditions, but we do need to know how to identify them and talk about them.

• Oracles. Oracles are how problems are detected. No matter what your coverage is, you

can’t find a bug without some oracle. An oracle is defined as a means to detect a bug

once it has been encountered. There are many kinds of oracles, each of which are

sensitive to different kinds of bugs, but every oracle ultimately comes down to some

concept of consistency. We can detect a bug when the product behaves in a manner

that is not consistent with something important, such as a specification, or user

131

expectation, or some state of the world that it’s supposed to represent, etc. Testing can

be characterized as the search for important inconsistencies between the state of the

product as it is and as it ought to be.

• Motivating Risk. The motivating risk for a test is the probability and the impact of a

problem with the product that justifies designing and performing that specific test. All

testing is both motivated by our beliefs about risk and all good testing leads to a better

understanding of the actual risk posed by the product. Ultimately, the purpose of testing

is to establish and maintain a good understanding of risk so that everyone on the team,

including developers and management, can make the right decisions at the right time to

develop the product.

Conversation Patterns for Testing

“Why didn’t we find that bug before we released?”
This may be interpreted as:

1. That is the sort of interesting bug we would have wanted to find before release.

2. We tried to find every interesting bug before release.

3. Yet, we did not find that bug, which is disappointing.

4. Something about our process must have been wrong, which led to that disappointment.

5. What went wrong?

But premise #4 is incorrect. It is not necessarily true that something must go wrong for a bug to remain

undetected. That’s because testing is necessarily a sampling process. We cannot test everything, and we

don’t even try to do so. We make educated guesses about risk, and while we can improve our education

and make better guesses, we can’t remove the element of guessing entirely. In other words, even the

best test process that it is possible to perform may lead to some disappointment. Testing just isn’t a sure

thing.

However, it may very well be true that something did go wrong with our process, especially if the bug

that escaped is a particularly bad one. Treat every escaped bug as an opportunity to ask healthy and

constructive questions about what happened and why.

Suggested response: “Let’s look into it and find out.”

Why this matters: Discussing, evaluating, and defending your tests begins with

understanding these five elements that every test must have. When you explain

your tests and show how they fit in the overall test strategy, you will have to

speak to each of these essential elements.

132

No need to feel defensive about this. No one can rationally expect perfection, but our clients can expect

testers to learn from experience. But beware of reducing the situation to a simple one-dimensional

explanation. When investigating and discussing the matter more deeply, keep these issues in mind:

1. Testability. Was there anything about the design the of the product, or organization of the

project, which allowed this bug to hide from us. Is there some identifiable improvement in

those things that would make it harder for future bugs to hide?

2. Opportunity cost. If you had done what was necessary to find that escaped bug, would

other bugs have escaped instead?

3. Hindsight bias. When analyzing how to avoid future bugs, it is tempting to focus on the

exact circumstances of the bug that escaped, because you know that bug actually occurred.

But that is too narrow. The next bug to escape won’t be exactly like that one, but may be

similar, so think about the set of all bugs that are similar but not the same, and what you

could do to find any future bug belonging to that set.

4. Automation. Is there an automatic way to catch bugs like that? Are such bugs important and

prevalent enough to justify that automation?

5. Tester Agency. Does the reason the bug escaped imply anything about the focus,

commitment, or skills of the tester? Perhaps the test strategy and tool set are fine, and the

tester just had a bad day. Or perhaps no one has taken enough ownership of the testing

process.

“Why don’t we do prevention instead of testing?”
On its face, this question asserts a false choice. But the questioner probably meant to say “Perhaps it

would be better to put more of our effort into prevention and less into testing.”

Suggested response: Affirm the value of both activities, but turn the conversation to the central issue,

which is risk: “We must do both. For instance, we do lots of things to prevent our building from burning

down. We have circuit breakers to prevent electrical fires. But we also have smoke alarms and fire

stations, just in case our prevention measures fail. The depth of our testing should relate to the

potential risk we perceive, and as that risk falls, so might our investment in testing. Of course, the

ultimate prevention is not to develop a product in the first place. Assuming we want to create

something new in the marketplace, however, a certain amount of risk is inevitable.”

“Testing would be better if we used {X} practice, just like {successful company Y}!”
No matter what field of craftsmanship you look at, there are a few things that you will always see. One

of them is practitioners who are aware of a variety of practices (i.e. methods, tools, and any other

heuristics that are available for use) and make choices about which ones to use in which situations.

Methodology should be context-driven, not driven by blind pursuit of whatever is popular at the

moment.

When someone suggests that there is a successful company (Facebook and Google are often cited) that

gets its success through not doing certain things or always doing other things, this is probably not

coming from a consideration of problems and how to solve them. It’s based on incomplete rumors. We

don’t know what Facebook and Google actually do; nor why they chose to do it that way. And we aren’t

in a position to evaluate that. We may be hearing a self-congratulatory myth.

133

Furthermore, what makes companies successful is primarily their business models and intellectual

properties, not their engineering excellence. Famous companies can generally afford to be shockingly

wasteful and still make a profit. And anyone who has worked in a famously successful company can tell

you it’s a constant challenge to get people to believe in the possibility of failure. Success creates a haze

of complacency which is toxic to process improvement.

Suggested Response: Affirm that good ideas can come from anywhere. Remind that responsible

technical organizations probably do not thoughtlessly follow trends for the sake of trends. Then offer to

seriously consider the practice. If a team wants to try it out, encourage them to make an experiment.

But keep certain caveats in mind and be prepared to discuss them:

1. Skills. Does the new practice require special skills to use correctly? Is any outside training

required?

2. Opportunity cost. If you deploy this practice what will be pushed aside? What will you not have

time to do?

3. Evaluation. How will you know if it is going well? How will you detect new problems that are

created?

4. Progress horizon. How much time do you need to give the experiment in order to declare it a

success or failure? When is it reasonable to expect results?

5. Required support. How much cooperation and what infrastructure is needed to try it out? Can it

be done on the cheap?

“Why can’t we automate all the testing?”
This is a reasonable question if you believe that testing is the same as fact checking. Fact checking can

be automated, although it might be expensive and slow to create and maintain it. Nevertheless it is

possible.

But testing is much more than fact checking. Testing encompasses the entire process of building mental

models of the product and of risk that are required in order to make a compelling, credible report about

the readiness of that product for release. Remember, you are not verifying facts when you test, you are

making an assessment.

The short reason we can’t automate “all the testing” is that to make an assessment of a product is a

non-algorithmic, exploratory, socially situated learning process. But here is a slightly longer version of

that: Some bugs are easy to anticipate and easily triggered, and easy to spot when they manifest

themselves (call those bugs “shallow”), but many bugs are not easy to anticipate, or not easily triggered,

or not easy to detect unless you know just what to look for (call those bugs “deep”). Testers are not just

looking for shallow bugs, but for all important bugs. To find deep bugs requires insight of a kind that

often comes only after playing with the product for an extended period of time. It may require noticing

something strange and following-up on it. It may require doing complex operations that are easy for a

human to do, yet expensive to automate. No good tester has all the good testing ideas right at the

beginning of a project. Meanwhile, to automate something requires that you have a specific formal

procedure that will spot every kind of important bug. There is no such thing. Big bugs don’t follow any

pre-ordained set of rules, and without rules we don’t know what code to write to find them.

One more reason we can’t just automate all the testing is that testing requires social competence. A

tester must make judgments about what kind of data matters, what kinds of problems matter, which

134

testing is more important or less important, etc. These decisions are based on an understanding of the

shifting and evolving values of the stakeholders of the product. These decisions must be defensible. All

that requires social competence.

Automated checking only succeeds as a substitute for testing where there are no deep bugs that matter.

Wherever you find that, it’s usually in a very stable codebase or in a product that has customers who are

tolerant about failure.

Suggested response: “Look. We can’t automate parenting, management, getting to know people, falling

in love, grief counseling, medical care, government, and no one is wondering when we can fire all the

programmers and replace them with automated programmers. So, why do you think a skilled activity

like hunting for a massive and completely unexpected bug is an exception to that? We can automate lots

of interesting things that are part of testing, however. Wherever we can do that in a cost-effective way,

we should.”

“Why does testing take so long? How much testing is enough?”
These questions can only be answered in context. Some testing takes longer, and some testing can be

done quite quickly. It depends on many factors, all of which can be called aspects of testability. See the

Heuristics of Testability document for details.

Suggested response: “Which specific testing are you talking about? If we are talking about something

specific, then we can reach a specific answer. Otherwise here is the general answer: testing takes

however long it takes for the tester to build a compelling enough case that the product is tested well

enough so that the stakeholders are able to make decisions based on a good enough knowledge of the

risks associated with the product.”

“Why do we need dedicated testers? Why don’t we just get user feedback instead of

testing? Why can’t developers do the testing? Why don’t we just get everyone to test?”
Often the foundational issue that gives rise to this question is a lack of understanding about what skilled

testing is and what skilled testers do. The questioner may consider testing skills to be ubiquitous. The

questioner may really be saying “since anyone can test as easily as anyone else, why bother with full-

time testers?”

However, it may be that the lack of understanding is about roles: maybe the questioner is questioning

the very idea of having people specialize or focus on any one activity, rather than fluidly moving from

one activity to another over time. See the How to Think About Roles and Actors document for a list of

dynamics that affect roles and the people who play them. For instance, one benefit of a having a person

specialize in a role is readiness. If you only test once-in-a-while, you are probably not looking ahead and

planning and preparing to perform testing. While a dedicated tester would be preparing, a casual tester

if doing some entirely different job.

Suggested responses: “Dedicating people to a complex task improves their efficiency. This involves the

improvement of competence, commitment, readiness, and coordination. Of course, in a low risk

situation, we might not need such efficiency and effectiveness. Yes, we can get feedback from users,

too, and we should, but you still need people who can process that information. Users are terrible bug

reporters, and developers don’t have the time and usually not the patience to follow-up on all those

135

half-baked reports. Certainly, everyone on the team can help testing. But someone needs to be

responsible for it, or it will turn into chaos.”

136

Investigating Bugs: A Testing Skills Study

By James Bach

Principal Consultant, Satisfice, Inc.

Ask any experienced tester how he does his work, and the answer is likely to be extremely vague

("Um, you know. I use my experience to... Um... black box the test case plan and such..."), or

extremely false ("Our testing consists of detailed formal test procedures that are derived from

written requirements"). Forget about bad testers, even good testers are notoriously bad at

explaining what they do. Doing testing, describing testing, and teaching testing are all different

things. No wonder that the IEEE testing standards are a joke (a very old joke, at this point), and

based on talking with people involved in the upcoming ISO standard, it will be no improvement.

If we truly wish to develop our craft toward greater professional competence and integrity, then

before we can worry how testing should be, we must be able to say how it is. We must study testers

at work. Let me illustrate.

Years ago, I was hired by a company that makes printers to help them develop a professional

testing culture. Instead of bringing in all my favorite testing practices, I started by observing the

behavior of the most respected testers in their organization. I divided my study plan into segments,

the first of which was bug investigation.

The organization identified one team of three testers (two testers and a test lead) that had a great

reputation for bug investigation. This team was responsible for testing paper handling features of

the printer. I wanted to see what made them so good. To get the most accurate picture of their

practices, I became a participant-observer in that team for one week and worked with them on

their bug reports.

Stated Procedure for Investigating Bugs

137

I sat down with George, the test lead, and asked him how he did bug investigation. He said, “Don’t

ask me to change anything.”

“Good news, George,” I replied. “I’m not that kind of consultant.” But after some feather smoothing,

he did answer:

1) Notice if automation checks flags a problem. The automation system alerts the testers that

something did not perform as expected.

2) Reproduce the problem. The tester executes the test again to recreate the symptoms of the

problem.

3) Isolate the problem. The tester edits the test script, cutting it down to the minimum required

to exhibit the problem.

4) Pass the problem to the test lead for investigation and reporting. The tester delivers the

edited test script to the test lead. The test lead investigates the problem to determine, as best he

can, its dynamics and causes. The test lead then writes the bug report and submits it.

This description is typical of how testers claim to investigate and report bugs. It’s only unusual in

that the test lead performs the investigation and writes the actual bug report. However, there was

another way in which this description was unfortunately typical: it’s not true.

I knew it couldn’t be true, because it’s a process description that anyone in that company would

claim to use, yet only this team was respected for the quality of its work. There must be something

more to their process that I wasn’t being told.

Sure enough, during my observations and further conversations with the team, I found the actual

process used in the team to be much more sophisticated and collaborative than their stated

process. Their actual process ranks among the best I have seen at any company. (I first said that in

the year 2000, and it remains true in the year 2011).

Observed Process of Investigating Bugs

138

What I observed in practice was an exploratory investigation carried out by the whole team. When

an anomaly worth investigating was spotted by a particular tester, the other two came over and

they engaged together in two parallel loops of inquiry: investigating the bug and questioning the

status and merit of the investigation itself. There were two possible outcomes, aborting the

investigation or reporting the bug. The actual bug report was written by the test lead.

Part I: Identification

1. Notice a problem (during an automated check or any other situation).

It is a general practice in the industry to construct tests that have specific expected results. This

team took that idea further. Although they did establish certain specific expectations in

advance, they also looked at whatever happened, as a whole, and asked themselves if it made

sense. This extended even to the pattern of clicks and whirrs the printer made as it processed

paper, and the timing of messages on the control panel. I call this the Explainability Heuristic:

any unexplained behavior may be a potential bug, therefore we attempt to explain whatever

happens.

2. Recall what you were doing just prior to the occurrence of the problem.

3. Examine symptoms of the problem without disturbing system state.

Prior to starting a full investigation of a problem that may be difficult to reproduce, the testers

capture as much volatile information as they can about it. This includes reviewing their actions

that may have triggered the problem and examining the problem symptoms while disturbing

the state of the printer as little as possible.

During identification, the testers transition from a defocused behavior of observing whatever

might be important to the focused task of investigating specific states and behaviors.

Part IIa: Reality Check Loop

The tester must decide whether to pursue the investigation or move back into open testing. So,

prior to launching a bug investigation, and repeatedly during the investigation, these questions are

asked.

1. Could this be tester error?

2. Could this be correct behavior?

3. Is this problem, or some variant of it, already known?

4. Is there someone else who can help us?

5. Is this worth investigating right now?

6. Do we know enough right now to report it?

The test lead is usually consulted on these questions before the investigation begins. But testers

apply their own judgment if the test lead is not available. Contrary to George’s first description of

how his team worked, the testers on his team used initiative and routinely made their own

decisions about what to do next.

139

In the event that an investigation is suspended because of the difficulty of reproducing it, it may still

be reported as an intermittent problem. Whether or not it’s reported, the testers will preserve their

notes and be on the lookout for the problem as they continue testing. Some investigations go on like

that for months.

Part IIb: Investigation Loop

Once it’s determined that the anomaly is worth looking into, the investigation begins in earnest. As I

observed them, bug investigations were not a linear execution of predefined steps. Instead, they

proceeded as an exploratory process of gathering data, explaining data, and confirming

explanations. The exploration was focused on reproducing the problem and answering certain key

questions about it. When they were answered well enough, or when the amount of time and energy

spent on the problem exceeded its importance (that’s what the reality check loop is all about) the

investigation ended and the bug was reported. Sometimes investigations continued after making an

initial report. This was done so that the developers could begin to work on the bug in parallel with

testers’ efforts to give them better information.

The investigation process is marked by a series of focusing questions that are repeatedly asked and

progressively answered:

1. How can the problem be reproduced?

The testers not only reproduce the problem, they try to find if there are other ways to make it

happen. They progressively isolate the problem by discerning and eliminating steps that are not

required to trigger it. They look for the most straightforward and general method of making it

happen. They also seek to eliminate special conditions or tools that are not generally known or

available, so that anyone who reads the bug report, at any later time, will have the ability to

reproduce the problem.

2. What are the symptoms of the problem?

Apart from identifying and clarifying its obvious symptoms, the testers are alert for symptoms that

may not be immediately obvious. They also look for other problems that may be triggered or

exacerbated by this problem.

3. How severe could the problem be?

The testers try to analyze the severity of the problem in terms of how it would affect a user in the

field or create a support issue for the company. They look for instances of the problem that may be

more severe than the one originally discovered. They look for ways to reproduce the problem that

are most plausible to occur in the field.

The testers also consider what this kind of problem may indicate about other the potential

problems not yet discovered. This helps them assure that their test process is oriented toward

areas of greatest technical risk.

4. What might be causing the problem?

140

The most interesting element I observed in the team’s process of bug investigation is their

application of technical insight about printer mechanisms (both hardware and firmware) to guide

their investigation of the problems. In the course of investigation, the testers did not merely

manipulate variables and factors arbitrarily. They investigated systematically based on their

understanding the most likely variables involved. They also consulted with developers to refine

their understanding of printer firmware dynamics.

Although there is no set formula for investigating problems, I observed that the testers relied upon

their knowledge of printer mechanisms and their experience of past problems to organize their

investigation strategy. So, maybe that’s the formula: learn about how the printer works and pay

attention to patterns of failure over time.

Part III: Reporting

Although I participated in bug investigation, I did not personally observe the process of writing a

bug report in this team. The testers reported that they sometimes wrote a draft of the bug report

themselves, but that all reports were edited and completed by the test lead.

Supporting Factors that Make the Process Work

Bug Investigation Philosophy

Apart from the process they follow, I found that there was a tacit philosophy of bug investigation in

the team that seems to permeate and support their work. Here are some of the principles of that

philosophy:

• We expect testers to learn the purposes and operational details of each test.

• We expect testers, over time, to gain a comprehensive expectation of the behavior of the

product, and to follow-up on any anomalous behavior they detect at any time.

• Each bug is investigated by all members of the team.

• Bug investigation is primarily our job, not the developers. If we do our job well, then

developers will be able to do their jobs better, and they will respect us for helping them.

• Testers should develop and use resources and tools that help in bug investigation.

• Ask for help. Someone else may know the answer or have an important clue. Seek advice

from outside the team.

• We expect testers to use initiative in investigation and consult with the test lead as they go.

Individual Initiative and Team Collaboration

During the period I observed, the testers in the team treated each bug investigation as a group

process. I had seen this before, and rarely since. They also consulted with testers outside their team,

and with developers. Their attitude seemed to be that someone in the next cube may have

information that will save them a lot of time and trouble.

The testers also showed personal initiative. They did not seem worried about crossing some

forbidden line or running afoul of some corporate rule during the course their investigation. They

appeared to take ownership of the problems they were investigating. The test lead told me that he

141

encouraged initiative in his testers, and that he expected the testers, over time, to learn how all the

tests worked and how the printers worked. In separate interviews, the testers confirmed that

sentiment, and stated that they felt that the resulting working conditions in their team were better

than in most other teams they had served on at that company.

Observed Skills

I saw each of the following skills exhibited to some extent in each of the testers in the team. And in

my opinion, the method of the investigation used in the team requires competence in these skills.

• Skepticism. Skepticism might be called the fear of certainty. It can be seen as central to the

challenge of thinking scientifically; thinking like a tester. Good testers avoid sweeping

claims about the product, because any claim may be refuted with the execution of the next

test.

• Performing an open investigation. An open investigation is a self-managed investigation with

general goals and few explicit constraints. An open investigation involves coordinating with

clients, consulting with colleagues, collecting information, making conjectures, refuting or

confirming conjectures, identifying issues, discerning and performing tasks, and reporting

results. An open investigation in conjunction with testing is commonly called “exploratory

testing.”

• Understanding external and internal product functionality. Bug investigation requires a

sufficient understanding of both external and internal workings of the technology. This

knowledge is gained over time and over the course of many investigations, and through

studying documentation, exploratory testing, or by observing other testers at work.

• Consulting with developers or other testers. Vital information needed to investigate problems

is scattered among many minds. Good testers develop an understanding of the network of

people who may be able to offer help, and know to approach them and efficiently elicit the

information they need. In the case of developers, testers need the ability to discuss and

question software architecture.

• Test factoring. When anomalous behavior is observed in the product, the ability to isolate

the factors that may be causing that behavior is at the heart of the investigation process.

This includes insight about what factors may be causally related, the ability to form

hypotheses about them and to relate those hypotheses to observable behavior.

• Experiment design. Testers must be able to reason about factors and find methods of

controlling, isolating, and observing those factors so as to corroborate or refute hypotheses

about the product.

• Noticing problems. A tester can know how the product should function and yet still not

notice a malfunction. Being alert for problems, even in the middle of investigating other

problems, and even in the absence of an explicit and complete specification, is a skill by

itself. This requires a good knowledge of applicable oracles, including tool-based oracles.

• Assessing problem severity. This requires understanding the relationship between the

technology, the hypothetical user, the project situation, other known problems, and the risk

associated with problems that may lie hidden behind the one being investigated. This skill

also requires the ability to imagine and articulate problem severity in terms of plausible

scenarios.

142

• Identifying and using technical documentation. Bug investigation often requires spot

learning about the product. With printing technology, that can mean poring through any of

thousands of pages of technical documents. Testers need to know where and how to find

relevant information.

• Recording and maintaining information about problems. The testers must deliver

information about a problem in an organized and coherent form in order for the test lead to

confirm it and write the report. This includes the ability to make and maintain notes.

• Identifying and using tools. Tools that may aid testing are scattered all about. Enterprising

testers should be constantly on the lookout for tools that might aid in the execution of tests

or diagnosis of problems. Testers must have the ability and initiative to teach themselves

how to use such tools.

• Identifying similar known problems. In order to know if a similar problem is already known,

the testers must know who to check with and how to search the bug tracking system. This

also requires enough technical insight to determine when two apparently dissimilar

symptoms are in fact related.

• Managing simultaneous investigations. Rarely do we have the luxury of working on one thing

at a time. That goes double when it comes to investigating intermittent problems. Such

investigations can go on for weeks, so testers must have the ability to maintain their notes

and report status over the long term. They must be able to switch among investigations and

not let them be forgotten.

• Escalation. Since these investigations are largely self-managed, it’s important to know when

and how to alert management to issues and decisions that rightly belong at a higher level of

responsibility.

Case Study: The Frozen Control Panel

This is an example of an actual investigation in the team that took place while I watched. It appears

to be typical of other investigations I had been told about or personally observed. The important

aspect of this case is not the conclusion— we could not reproduce this problem— but rather the

initiative, teamwork, and resourcefulness of the testers. This investigation is documented in as

much detail as we could remember in order to provide a feel for richness and flow of an exploratory

testing process.

1. While Clay was running one of the paper handling tests, he encountered a printer lockup.

Clay called Ken and James over to observe and assist.

2. Clay had been running an automated check that included many steps. After executing it once

he started it again. This time, it began executing, then stopped, apparently waiting for a

response from the printer. At that point Clay noticed that the printer was frozen.

3. Clay asked Ken if he knew about the problem and whether he thought the problem was

worth investigating.

4. Without resetting the printer, Ken examined the surrounding symptoms of the problem:

• Check control panel display (display showed “Tray 5 Empty” continuously).

• Check ready and data light status (both were lit and steady).

• Open and close a tray (display did not react; engine lifted the tray).

• Open and close a door (display did not react; engine performed paper path check).

143

• Try control panel buttons (display did not react to any buttons).

5. Ken and Clay examined the test output in the terminal window and discovered that the test

harness tool had stopped during its initialization, before any script code had been executed.

6. After a brief conference, Ken and Clay decided that the problem was worth investigating

and conjectured that it may be due to an interaction between the timing of control panel

display messages and messages sent to the printer.

7. Ken performed a cold reset of the printer.

8. Clay restarted the test tool. The problem did not recur.

9. Clay edited the test script down to the last few operations. He executed the modified script

several times. The problem did not recur.

10. To test the hypothesis that the problem was related to the timing of alternating “READY”

and “TRAY 5 EMPTY” displays on the control panel, Ken and Clay coordinated with each

other to start executing the test tool at various different timings with respect to the state of

the control panel display. No problem occurred.

11. We went to see a firmware developer on the control panel team, and asked him what might

account for these symptoms. He seemed eager to help. He suggested that the problem might

be a deadlock condition with the engine, or it might be a hang of the control panel code

itself. He also suggested that we review recent changes to the firmware codebase, and that

we attempt to reproduce the problem without using the test tool. During the course of this

conversation, the developer drew some basic architectural diagrams to help explain what

could be going on. We questioned him about the dynamics of his diagram.

12. The developer also conjectured that the problem could have been leftover data from a

previous test.

13. Then we went to see a fellow who once supported the test tool. With his help, we scrolled

through the source code enough to determine that all the messages displayed by the tool

before it halted were issued prior to contacting the printer. Thus, it was possible that

whatever happened could have been triggered by the first communication with the printer

during tool initialization. However, we were unable to locate the tool routine that actually

communicated with the printer.

14. Because the control panel locked up with the data light on, we knew that it was unlikely to

have been in that state at the end of the previous successful test case, since that case had

reported success, and left no data in the printer.

15. We looked for a way to eavesdrop on the exact communication between test tool and the

printer, but found there was no easy way to do that.

16. We called upon another tester, Steve, for help, and together we wrote a shell script, then a

Perl script, that endlessly looped while executing the test tool with an empty script file. At

first we thought of introducing a random delay, but Clay argued that a fixed delay might

better cover the timing relationships with the printer, due to the slight difference between

the fixed time of the test and the presumably fixed response time of the printer.

17. We ran the script for about an hour. The printer never locked up.

18. While watching the control panel react to our script, Clay saw a brief flicker of an

unexpected message on the display. We spent some time looking for a recurrence of that

event, but did not see one.

144

19. We then went to visit a control panel tester to get his ideas on whether a problem like ours

had been seen before, and how important a problem it could be. He advised us that such a

problem would be quite important, but that he knew of no such problem currently

outstanding.

20. Clay independently searched the bug tracking system for control panel problems, and found

nothing similar, either.

21. After several hours of all this, we were out of easy ideas. So, we called off our investigation

until the test lead returned to advise us.

The Study of Skill is Difficult

It’s quite difficult to study the anatomy of a practice, and the skills that practice requires. You can’t

know at first exactly what to watch, and what to ignore. Anthropologists learn to watch behavior for

long periods of time, and to relentlessly consider the possibility of researcher bias. And just the act

of studying a set of skills makes people nervous and possibly change their behavior. I had to agree

not to release any information about the progress of my study until I cleared it with the people I

was studying.

Still, even a modest one-week study like this one can have profound positive effects on the team.

When I gave this report to the team for approval, the team was a bit stunned at how much my

description differed from their self-description. One of the testers asked me if he could staple it to

his résumé. Perhaps there is even more depth to the skills of bug investigation than I have identified

so far, but this is the sort of thing we must begin to do in our field. Observe testers at work and go

beneath the grossly general descriptions. See what testers really do. Then maybe we can truly begin

to build a deep and nuanced vision of professional software testing.

145

 146

Rapid Software Testing Guide to
Making Good Bug Reports

By James Bach and Michael Bolton, v.1.5

Bug reporting is central to testing. The bug report, whether oral or written, is the single most visible

outcome of testing. And the quality of your reports is probably the single most important factor that

determines your credibility as a tester. This document describes bug reporting from the

perspective of Rapid Software Testing methodology.

Throughout this guide I will distinguish between what is expected of “supporting testers” (anyone

helping the test effort temporarily or intermittently but not committed to the testing role or

perhaps even that project) and “responsible testers” (those who assume the role of tester on a

project and commit themselves to doing that job well over time).

What is a bug?
A bug is anything about the product that threatens its value (in the mind of someone whose opinion

matters). Less formally, you could say that a bug is something that bugs someone whom we care

about. Sometimes these are called defects, but I don’t recommend using that term, since it sounds

accusatory, and it implies that testers may only report things that they are absolutely sure are

wrong with the product. Bug is a time-honored and somewhat vague term, which suits our need to

report things that are possible threats to the value of the product, even things we might be wrong

about.

Bugs are not about our own personal feelings. You can use your feelings to find a bug, but then you

better know a good reason why someone else would have the same feelings. That’s because your

feelings don’t really matter. A tester is an agent for the people who do matter, usually, because the

people who matter probably have other things to do than test software. Thus, we must learn about

the people who do matter: the users, the customers, the bosses, society, and the standards that are

relevant to them. If you want to write successful bug reports, get inside the minds of your clients.

Normal Bug or Enhancement Request?
Bugs come in two flavors: normal or enhancement. A normal problem is a failure of the product to

fulfill its intent; whereas an enhancement request is for when you believe the intent itself should be

changed. In other words, “the product isn’t doing what you want it to do” is a regular bug; “the

product is doing what you want, but you should want something better than that” is an

enhancement request. These different cases must be reported a little differently. In the case of an

enhancement request, you are making a pitch to the stakeholders to aim higher (in your opinion).

You are essentially playing designer, here, which means if you aren’t careful you will step on the

toes of the designer.

Whenever you make an enhancement request, I suggest phrasing the bug title as a request (i.e. start

with the word “please…”) to make it clear that you are suggesting a change to the scope of the

product.

147

What is a bug report? What are its elements?
A bug report is a description of a suspected bug. The most basic bug report is a statement to the

effect that “here’s something I think may be wrong with the product.” In real life this could manifest

in a manner as simple as pointing at a screen and saying “Uh oh, look at that.” In fact, that may be all

you need to do in the case where you are testing for a friend standing next to you and you both have

a strong shared mental model of what the product should be and do. If we are all close friends or if

we all belong to the same hive mind, bug reporting can be pretty easy.

Bug reports can be formal or informal, written or oral. Underlying even the simplest bug report is a

certain structure with the following four elements:

- A description of the problem you perceive. What bad thing happens; or what good thing

doesn’t happen? Be specific and clear about that. Ask yourself if that is the root of the

matter, or whether there is something bigger or more fundamental that you ought to report

instead.

- How you encountered that problem. The bug you perceive ought to be grounded in a direct

observation of the product itself. Be specific about steps and data you used.

- The reason why it is a problem. The means by which you recognize a problem that you

encounter while testing is called an oracle1. It can be a principle, specification, feeling,

example, tool, or even a person. All bug reports are based on some sort of oracle, and maybe

several different oracles. Some oracles are more authoritative (stronger), others merely

suggestive (weaker). You might use a weak oracle (such as a feeling that “this is hard to

use”) that gives you a suspicion that something is not right and needs investigation, then

after some investigating find that you have a stronger oracle (“this violates the defined

usability standard) against which to actually report the bug.

- Why it’s a problem that matters. Just the fact that a behavior is a threat to the value of the

product is not necessarily interesting. Your clients need to know: is it a big bug or a little

bug? You should be ready to say how important a bug it could be. This is related to how

likely it is to be seen and how much damage it could do if it occurs. More on that below.

Even if you make a very informal bug report, be ready to make a more complete and explicit report,

if your report is challenged. Some of the common ways bug reports are challenged include:

• “I don’t know what you are talking about.”

• “That doesn’t happen when I try it.”

• “I don’t see why that’s a problem.”

• “That’s only a problem for beginners.”

• “It’s a problem but it’s difficult to fix, and there’s an easy workaround.”

• “It’s a problem but only weird users and testers will ever stumble into it.”

• “Maybe you don’t like the way it works, but most real users will like it.”

You ought to take challenges like these in your stride. Remember that the developer has a

fundamentally optimistic, builder’s mentality. This is a good thing. To create anything complex and

wonderful requires optimism. Your bug reports are like ants raining on their picnic. So, keep your

cool, and be ready to offer evidence or argument to support the best case you can make that a bug is

worth fixing.

Apart from challenges, you also should anticipate the common questions that developers and

managers may ask, such as:

1 See Michael Bolton’s five-part series on oracles: http://www.developsense.com/blog/2015/09/oracles-
from-the-inside-out/

148

Basic Information (expected from anyone)
• What seems to be the problem?

• What exactly did you see happen?

• What were you doing right before you saw the problem? Were you doing anything else

interesting at the same time?

• Have you seen the problem more than once? If so, what other times have you seen it?

• Did you take any screenshots or a video?

• What data were you using? What files? What exactly did you input?

• What good reason do you have for thinking it is wrong?

• What version of the product were you testing? What platform are you using?

Investigation Details (expected from responsible testers)
• Is it already reported?

• Have you tried to reproduce the effect? What are the steps to reproduce it?

• Have you tried simple variations of the input or operations that led to the symptoms? Have

you tried on different platforms or in different modes?

• Have you checked to see that the product is actually installed properly and running? Is your

system is properly configured?

• Did this problem exist in the earlier versions of the product?

• Do you have a specific suggestion of what should happen instead? How could it be better?

• How easy is it to make the bug happen? What is the worst consequence you can think of that

could result from it?

Not all of these questions apply for every bug, but your credibility as a tester depends on being able

to answer them in the cases where they do apply. For instance, if you report that “uploading a big

file” causes some sort of error, then you must say in the bug report exactly how big were the files

that you tried, and be sure those exact files are accessible to the developers.

Bug Investigation
Supporting testers are generally not expected to investigate bugs beyond what is necessary to make

a clear report.

Responsible testers are expected to investigate bugs to the point they can make clear, relevant, and

concise reports. However, for puzzling or difficult to reproduce bugs, it is often is the case that the

developer will have immediate insight into the underlying causes. For that reason, I recommend the

10-minute heuristic: investigate a puzzling bug for no more than about 10-minutes before checking

in with a developer about it (assuming the developer is available). If the developer is also puzzled,

continue the investigation, otherwise, if the developer claims to know what is happening, just

report what you know and move on to find the next bug. That will mean you are finding more bugs

instead of making ever nicer-looking reports.

The goal of bug investigation is to gather good enough information about it so that your clients can

evaluate the problem and fix it. This generally means four things:

• Reproduce the problem reliably.

• Isolate the bug by identifying and eliminating extraneous factors, discovering the limits of

the bug, and collecting evidence about its underlying causes.

• Generalize the report by discovering the broadest occurrence and impacts of the bug.

• Support your case with relevant and necessary data that will make the developer’s fix

investigation easier.

149

Bug investigation often requires technical knowledge, product knowledge, and analytical skills that
are beyond the scope of this guide to explain. That’s why we don’t expect much investigation to be

done by supporting testers coming in to the project temporarily.

Formal vs. Informal Bug Reporting
Consider three kinds of bug reporting: MIP’ing, formal reports, and black flagging:

• MIP. This stands for “mention in passing.” To MIP a bug is to report it in a sentence or two

by voice, email, or instant message. It can even take the form of a question (“is this

supposed to work this way…?). There is no expectation of formally tracking such reports,

and there is no template for them. The main reason to MIP a bug is when you are fairly

confident that what you are reporting is not a bug, and yet you have a suspicion that it could

be. MIP’ing is partly a strategy for learning about the product, since early on in testing many

things that look like problems to you might not be. MIP’ing helps preserve your credibility

because if a MIP’ed bug turns out to be a real issue, you can fairly say that you did report it,

and because if it is not a bug, you can fairly say that you didn’t create unwieldy paperwork

for the team. MIP’ing is a very good way to work when you are pairing with a developer for

early testing.

MIP’ing is an excellent protocol for bug reporting when running a mass testing event with

supporting testers when developers or other experts are in the room with them. The

supporters then serve as “bug scouts”, while the experts perform investigations and take

responsibility for formal reporting, if required.

• Formal Reports. This means recording written bug reports in some sort of tracking system.

Formal bug reporting is slower and more expensive than MIP’ing, but has obvious

advantages when you are dealing with large numbers of bugs. Expecting supporting testers

to do formal bug reporting may not be reasonable, but if they do, someone with

responsibility will need to edit them. Poor quality formal bug reports can erode the

credibility of the testing effort.

• Black Flagging. This means going beyond reporting a bug to the extent that testers raise an

alarm about a serious underlying problem in the development effort. This may be necessary

for safety or security bugs that can only occur when there is a breakdown of development

discipline. Black flagging is for when you suspect that a bug is part of a much larger group of

bugs that may not have been found yet, or may not yet have been put into the code.

These forms of bug reporting are not the only forms that exist. But they serve to illustrate that bug

reporting is a socially-situated activity. However or whatever ever you do with your reporting, your

process must ultimately fit the social milieu of the project.

Elements of a Basic Formal Bug Report
Here are the most common fields found in a formal bug report:

• Title. A short summary that expresses the essence of the bug.

- One sentence long; about twelve words or less.

- It must be distinctive, not generic (i.e. don’t write “the product crashes”). The title

should uniquely identify the bug among all the other bug report titles.

150

- Try to put the actual problem right at the beginning (e.g. “Crash when logging in as
admin” rather than “When logging in as admin, product crashes”) because it’s easier

to read when looking at a list of bugs. As journalists say, “don’t bury the lead.”2

- If it is an enhancement request, consider starting the title with the word “please.”

• Description. Any other information about the specific failure mode and behavior of the

system that members of the team need to know about the bug.

- Keep it short. Give reasonable details about the bug, but don’t include information

that everyone on the team will certainly already know. If the problem is very

obvious (e.g. “Company name spelled wrong on the home page”) then you hardly

need to write a description.

- Write in professional language. Don’t use texting jargon. Spell words correctly.

- Provide steps to reproduce if those steps are not obvious. Don’t provide steps that are

obvious (e.g. “1. Connect to the Internet 2. Start the browser”).

- Indicate your oracles. That means say why you think this is a bug, unless this is

obvious. Don’t say silly things like “the product should not crash.” That sounds

insulting and it adds nothing to the report.

- Note any workaround for the bug that you know about.

• Version. This is the latest version of the product in which you detected the bug. If you also

tested earlier versions, note that in the description.

• Environment. The platform you were testing on. Typically this is your hardware, browser

and operating system. If you are testing an online product, specify the server. Report any

environment element that is interesting or unusual, or if it is customary to report it.

• Attachments. For all but the easiest to understand bug reports, it will be much appreciated if

you attach screenshots of the problem,3 or even small videos. Also include links to any

critical data files needed to reproduce the problem.

In addition to the basic fields, your bug tracking system may have other fields, as well. It will

autofill the ID, Reporter, and Date Reported fields. Then there is Status, Severity, and Priority,

which follow a protocol that is specific to your company and your project, so I won’t discuss

them here.

Give the bug report a good focus.
• Report the most compelling version of the bug. Bug reporting is a kind of sales job. You must

frame the report in the most compelling (yet truthful) way in order to maximize the chance

that it will be understood and acted upon. Try to focus on the aspect of the bug that can

have the most user impact, or the most negative public impact for your company. In other

words, try to identify the strongest, most compelling oracle that you can.

• Avoid reporting multiple problems in one bug report. Unless multiple problems are probably

the symptoms of one underlying fault in the product, they should be separated into distinct

bug reports. This is because it’s very easy for a developer to fix one problem, while

accidentally forgetting to fix others that are listed in the same report.

2 https://www.merriam-webster.com/words-at-play/bury-the-lede-versus-lead
3 Andrea Hüttner, a tester from Germany who works with a multilingual team, points out that videos and
screenshots are particularly important for her team because they communicate well across language barriers;
and even if everyone “speaks the same language,” videos and picture can bridge gaps in vocabulary.

151

• Avoid reporting the same problem in multiple reports. It is often difficult to tell whether two

problems that seem similar are genuinely the same problem. So, make your best guess or

consult with the developer to be sure.

Assessing the Significance of a Bug
A tester is the first judge of how “big” the bug is. This is true even for supporting testers, to some

degree. But for responsible testers it is a very important part of your work.

What makes a bug important? Basically four things:

• How frequently does it appear; or how easy is it to make happen? A bug that is seen often or

by a lot of users is going to be more important, all other things being equal. Are there lots of

different kinds of events that can trigger the bug? Is it highly vulnerable to the triggering

events? How visible and obvious is it when it appears?

• How much damage does it do when it occurs? The most important bugs are generally the

ones that stop the project, itself: so-called blocking bugs. These are bugs that prevent you

from testing. Down from that are bugs that harm or block the user. A bug that deletes data

may be more important than one that merely creates confusion in the user interface, but the

opposite can also be the case when confusion could result in dangerous user behavior.

While there are no hard rules about what specific symptoms constitute “more damage,” try

visualizing the problem, then consider the importance of the user who is affected, and how

upset they may be because of the bug.

• What does the bug imply about other potential risks? A bug may be especially important

because it implies that there is a big problem in the development process itself that may

have resulted in many similar bugs that are not yet found (see “black flagging”, above).

• What bad publicity might come from the bug? Bad feelings and bad reputation can accrue

from bugs even if the objective severity is not that bad. Consider how a bug might sound

when people complain about it on social media. Consider how it might erode trust in your

company’s brand.

Common Mistakes Testers Make in Bug Reporting
Watch out for these problems in your reports:

• Poorly worded title. The title is rambling, incoherent, generic, too long, or otherwise not

representative of the substance of the bug report.

• Reporting an unsupported opinion. A personal opinion with insufficient grounding or

evidence to support it is no basis to report a bug. The tester is not an authority; the tester is

an agent for people who are authorities.

• Reporting something that is not a problem. Even if the bug is based on an oracle other than

personal opinion, it may still be an incorrect oracle. The product may actually be intended

to work the way that it does.

• Not enough information to reproduce. There is not enough information to enable the

developer to verify the existence of the problem.

• User error. The report is based on a mistaken test, such as when an observation or operation

was not done properly.

• Focusing the report on the wrong thing. Sometimes testers will report a small problem that

sits in the shadow of a much more important problem. That can happen when they don’t

take a moment to consider the bigger picture of the bug.

152

• Disrespectful reporting. The report is written in a manner that will irritate the developer or

manager and erode credibility of the tester. This happens usually when the report is written

in a sloppy way, or seems to denigrate the developer.

• Pedantic reporting. The report includes information that is common knowledge, implying

that the developer is ignorant of basic facts. Example “Actual: product crashes. Expected:

product doesn’t crash.” The second part of that is pedantic.

• Terse report. If there are not enough words, it’s too hard to figure out what is being

reported.

• Unnecessary text. Including information that is already common knowledge can make it

seem like you are writing for the sake of filling in fields, rather than with the intent to

communicate clearly.

• Multiple reports. More than one bug report packed into one record. When in doubt, break it

out.

• Getting the severity wrong. Not all bug reporting systems require the tester to assess

severity, but if you get it wrong you will either cause someone to do unneeded work or else

let an important bug get buried.

• Confusing an ordinary bug with an enhancement request. Too often, I see testers reporting

minor bugs as enhancement requests. This seems to occur more often when a tester has a

specific fix in mind. It’s okay to make a suggested fix, but that’s not an enhancement request.

Enhancement means that you are suggesting a change in product scope; a change in the

requirements. Otherwise, you are merely offering a suggesting for how to correct an

ordinary failure of the product to do what it is intended to do. Reporting a normal bug as an

enhancement tends to decrease the probability that it will get fixed.

153

 154

A Context-Driven Approach to
Automation in Testing
By James Bach and Michael Bolton February, 2016 (v1.05)

There are many wonderful ways tools can be used to help software testing. Yet, all across

industry, tools are poorly applied, which adds terrible waste, confusion, and pain to what is

already a hard problem. Why is this so? What can be done? We think the basic problem is a

shallow, narrow, and ritualistic approach to tool use. This is encouraged by the pandemic,

rarely examined, and absolutely false belief that testing is a mechanical, repetitive process.

Good testing, like programming, is instead a challenging intellectual process. Tool use in

testing must therefore be mediated by people who understand the complexities of tools and

of tests. This is as true for testing as for development, or indeed as it is for any skilled

occupation from carpentry to medicine.

Thank you to our reviewers: Tim Western, Alan Page, Keith Klain, Ben Simo, Paul Holland, Alan Richardson,

Christin Wiedemann, Noah Sussman, and Joseph Quaratella.

James Bach, james@satisfice.com, http://www.satisfice.com, @jamesmarcusbach

Michael Bolton, michael@developsense.com, http://www.developsense.com, @michaelbolton

Copyright 2016, Satisfice, Inc., all rights reserved

155

A Context-Driven Approach to Automation in Testing

Robots! Help! 1

A Context-Driven Approach to
Automation in Testing
By James Bach and Michael Bolton February, 2016 (v1.05)

Table of Contents
Robots! Help! ... 2

The Trouble with “Automation” .. 3

First: Call them tools (not “test automation”). .. 4

Second: Think of testing as much more than output checking. ... 6

Distinguish between checking and testing... 7

Checking is important. .. 8

Third: Explore the many ways to use tools! .. 8

Let your context drive your tooling. ... 9

How specifically does context drive tooling? .. 10

Invest in tools that give you more freedom in more situations. ... 12

Invest in testability. ... 14

Let’s see tool-supported testing in action! .. 15

CASE #1: Tool use without checking. ... 15

CASE #2: Tool-support via patterned data generation for better coverage and a powerful oracle. 17

CASE #3: Automated checking. ... 20

Why is automating interactions through a GUI so difficult? ... 23

Automating actions is a tactic. It should not be a ritual... 25

156

A Context-Driven Approach to Automation in Testing

Robots! Help! 2

In this white paper, we offer a vision of test automation that puts the tester at the center of testing,

while promoting a way of thinking that celebrates the many things tools can do for us. We

embrace tools without abdicating our responsibility as technical people to run the show.

Tools can be powerful, and we are going to say encouraging and helpful things about them. But

automation can also be treacherous—not least because the label “automation” refers to a mess of

different things. So, we must begin with a sober look at some basic misconceptions that add

terrible waste, confusion, and pain to what is already difficult even in the best of times. If you need

good testing, then good tool support will be part of the picture, and that means you must learn

why we go wrong with tools.

Robots! Help!
We can summarize the dominant view of test automation as “automate testing by automating the

user.” We are not claiming that people literally say this, merely that they try to do it. We see at

least three big problems here that trivialize testing:

1. The word “automation” is misleading. We cannot
automate users. We automate some actions they
perform, but users do so much more than that.

2. Output checking can be automated, but testers do
so much more than that.

3. Automated output checking is interesting, but
tools do so much more than that.

Automation comes with a tasty and digestible story:

replace messy, complex humanity with reliable, fast,

efficient robots! Consider Figure 1. It perfectly

summarizes the impressive vision: “Automate the Boring

Stuff.” Okay. What does the picture show us?

It shows us a machine that is intended to function as a

human. The robot is constructed as a humanoid. It is

using a tool normally operated by humans, in exactly the

way that humans would operate it, rather than through

an interface more suited to robots. There is no depiction of the process of programming the robot

or controlling it, or correcting it when it errs. There are no broken down robots in the background.

The human role in this scene is not depicted. No human appears even in the background. The

message is: robots replace humans in uninteresting tasks without changing the nature of the

process, and without any trace of human presence, guidance, or purpose. Is that what automation

is? Is that how it works? No!

Figure 1

157

A Context-Driven Approach to Automation in Testing

The Trouble with “Automation” 3

Of course it is a light-hearted cartoon, not to be taken seriously. The problem is, in our travels all

over the industry, we see clients thinking about real testing, real automation, and real people in

just this cartoonish way. The trouble that comes from that is serious.

How serious? In the experience of the authors,

observing projects going back to the 80’s, we find

that it is normal for large scale automation efforts to

lavish the bulk of their budgets in the detection of

trivial and obvious GUI-level bugs, drawing much

needed time and effort away from the hunt for

serious but subtle problems—what we call deep

bugs. Furthermore, the typical automation approach

has the character of a Rube Goldberg machine—

swimming in dependencies and almost comically

prone to breakdown.1 This sort of automation

becomes almost like a new stakeholder on the project; as with some obsessive-compulsive “high

maintenance” cleaning lady who won’t even enter the house until it is already spotless. We believe

the effort typically invested in automation would in most cases be better invested directly into

humans interacting with the product in complex and sophisticated ways (which also finds the

shallow bugs) and into less expensive supporting tools that help testers test better.

No one can deny that automation tool sales demos are impressive. What we deny is that people

agree on what “automation” means, what it should be, and that those sales demos translate into

practical value on ordinary projects.

The Trouble with “Automation”
The trouble with “test automation” starts with the words themselves. Testing is a part of the

creative and critical work that happens in the design studio, but “automation” encourages people

to think of mechanizable assembly-line work done on the factory floor.

The term “test automation” is also ambiguous. It is common to hear someone say a sentence like

“run the test automation,” which refers specifically to tools. A sentence like “test automation is

worth doing” refers not only to tools but also to the enterprise of creating, maintaining, testing,

and operating those tools. In the first sense, test automation is not human at all. It’s incredibly fast

and inexpensive, too, since you don’t pay the computer. In the second sense, test automation is a

skilled activity performed by humans who write and operate software over hours, days, or

weeks—and those people must be paid for their time.

1 In one case, James was called in to help a project that had “more than 3,000” automated scripts, developed over a
nine-month period. James asked to see them executed, whereupon it was revealed that they all had been broken by a
recent update to their expensive commercial test tool and ongoing updates to their own product.

Figure 2: Cartoon by Rube Goldberg

158

A Context-Driven Approach to Automation in Testing

First: Call them tools (not “test automation”). 4

We observe that in common parlance, the driving tactic of “test automation” is to script ordinary,

rote actions of a user of the product—and a rather complacent, unimaginative user, at that— then

get the machinery to punch the keys at dazzling speed, and then

check to see whether specified actions and inputs produce

specified outputs. From there, it’s a small step to start thinking of

“test automation” as a sort of tester in its own right. But even a

minimally skilled human tester does far more than blindly

adhere to prescribed actions, and observes far more than the

output of some function. Humans have complicated lives,

agendas, talents, ideas, and problems. Although certain user and

tester actions can be simulated, users and testers themselves

cannot be replicated in software. Failure to understand this

simple truth will trivialize testing, and will allow many bugs to escape our notice.

How can we think about all this more clearly?

First: Call them tools (not “test automation”).
We define a tool as any human contrivance that aids in fulfilling a human purpose. A test tool could

be software; hardware; a map, document, or artifact; or some other heuristic that aids in fulfilling

a testing purpose. We are primarily concerned with software-based tools, here.

The term “test tool” connects us to the ordinary, everyday understanding that these contrivances

do not work without human guidance; they extend the capabilities of an appropriately skilled

human. Moreover, “tool” opens the door to the many ways that tools can lighten burdens and

amplify the power of testers.

Meanwhile, the term “test automation” threatens to dissociate people from their work. To

understand why, you must consider what testing is. To test is to seek the true status of a product,

which in complex products is hidden from casual view. Testers do this to discover trouble. A

tester, working with limited resources, must sniff out trouble before it’s too late. This requires

careful attention to subtle clues in the behavior of the product within a rapid and ongoing learning

process. Testers engage in sensemaking, critical thinking, and experimentation, none of which can

be done by mechanical means. Yet, in our long experience visiting hundreds of companies and

teams, we find managers and technocrats who speak of testing routinely ignore these intellectual

processes. We have tried reminding them—and our own colleagues, at times—of these crucial

elements that cannot be encoded into test cases or test software. “Oh we agree,” they might say,

but then lapse back into speaking exactly as if the essence of testing is somehow expressed in their

“test automation.” After years of this struggle, we conclude that the term itself is a sort of narcotic.

 “We define a tool as

any human contrivance

that aids in fulfilling a

human purpose.”

159

A Context-Driven Approach to Automation in Testing

First: Call them tools (not “test automation”). 5

Computer software is comprised strictly of explicitly encoded patterns. Any valuable or important

pattern of behavior will not happen unless it is expressed in code. This is obvious. What is not so

obvious is that much of what informs a human tester’s behavior is tacit knowledge2. (Whereas,

explicit knowledge is any knowledge that is represented as a string of bits, tacit knowledge is that

which is not or cannot be so represented.)

When a human tester interacts with a product, he spontaneously reacts to an astonishing variety

of surprising and erroneous events without ever having been consciously aware of an expectation

about them. If, for instance, a window turns purple for a

moment, or an extra line appears, or a process takes a little

longer to complete one out of ten times, he almost

effortlessly notices and reacts. But when this tester tells the

story of this test, perhaps by writing down its steps and

expected results, only a small part of all those real

expectations are expressed. No tester will encode an

unconscious expectation or unanticipated action. Since the

testing humans actually do cannot be put into words, it

cannot be encoded and therefore cannot be automated. We

should not use a term that implies it can be.

Everyone knows programming cannot be automated. Although many early programming

languages were called “autocodes” and early compilers were called “autocoders,” that way of

speaking peaked around 19653. The term “compiler” became far more popular. In other words,

when software started coding, they changed the name of that activity to compiling, assembling, or

interpreting. That way the programmer is someone who always sits on top of all the technology

and no manager is saying “when can we automate all this programming?”

To produce high-quality products and services, we need skilled people applying appropriate tools

to fulfill the mission of testing. The common terms “manual testers” or “automated testers” to

distinguish testers are misleading, because all competent testers use tools. Programmers and

researchers use tools, too, but no one speaks of “automated programming” or “automated

research.” No manager who calls for automated testing aspires to automate his management. The

only reason people consider it interesting to automate testing is that they honestly believe testing

requires no skill or judgment.

Since all testers use tools, we suggest a more interesting distinction is that some testers also make

tools—writing code and creating utilities and instruments that aid in testing. We suggest calling

such technical testers “toolsmiths.” Although toolsmiths and their tools help to extend, accelerate,

2 An excellent source for learning about this is Tacit and Explicit Knowledge by Harry Collins. We call Harry the
“sociologist for testers” because his studies of scientists at work apply perfectly to the world of testing, too.
3 According to Google Ngram Viewer

 “Since the testing humans

actually do cannot be put

into words, it cannot be

encoded and therefore

cannot be automated.”

160

A Context-Driven Approach to Automation in Testing

Second: Think of testing as much more than output checking. 6

and intensify certain activities within testing, they do not automate testing itself. Therefore, from

this point on, we shall try to avoid using the term “test automation.”

Second: Think of testing as much more than output checking.
We say that testing is evaluating a product by learning about it through exploration and

experimentation, which includes to some degree: questioning, study, modeling, observation and

inference, etc. 4

We choose our words carefully. Testing is necessarily a human process. Only humans can learn.

Only humans can determine value. Value is a social judgment, and different people value things

differently. Technologists may believe that they can automate the evaluation of requirements by

encoding them into a script, but the evaluation is provisional

and incomplete until it has been reviewed by a human. There

are nearly always circumstances in which a manager will say

“the tool is reporting a bug, but it is really not a problem in this

case.”

Exploration is central to our definition of testing because we

don’t know where the bugs are before we find them. Indeed,

with any new product we must discover where to look for

problems, and there are too many places to look for us to check

them all. We don’t even know for sure what counts as a bug; that

is a judgment that drifts and shifts over the course of a project.

We emphasize experimentation because good tests are literally

experiments in the scientific sense of the word. At least 300

years before anyone ever wondered what software could or

would do, “natural philosophers” were systematically testing

nature via their experiments.5 What scientists mean by

experiment is precisely what we mean by test. Testing is

necessarily a process of incremental, speculative, self-directed

search.

Finally, the “etc.” at the end is a signal that testing incorporates

many other analysis-related activities and disciplines. Activities

4 See http://www.satisfice.com/blog/archives/856
5 “…what these several degrees are I have not yet experimentally verified; but it is a notion, which if fully prosecuted
as it ought to be, will mightily assist the astronomer to reduce all the Celestial motions to a certain rule, which I doubt
will never be done true without it…” Robert Hooke, 1674, An Attempt to Prove the Motion of the Earth by
Observations, (http://bit.ly/1MDwhBI)

Good Checking
is a Subset
of Testing

Checking is not the

same as testing in the

way that biting is not

the same as eating; tires

are not the same as

cars; and spell checking

is not the same as

editing. Good checking

is always a product of

and embedded in a test

process. Testing gives

checking its value and

meaning.

161

http://www.satisfice.com/blog/archives/856

A Context-Driven Approach to Automation in Testing

Second: Think of testing as much more than output checking. 7

that aren’t themselves testing, such as studying a specification, become testing when done for the

purposes of testing.

Let’s break down testing further. What do we specifically do when we test? Testing is a

performance that involves several kinds of ongoing, parallel activities:

- we design our testing by learning and modelling the product, determining test conditions to

cover, generating specific test data, identifying and developing oracles (i.e. the means to

recognize problems when we encounter them), and establishing procedures to explore and

experiment.

- we interact with the product by configuring, operating and observing it.

- we evaluate the product by using appropriate oracles to detect inconsistencies between the

product and qualities that we might consider ideal.

- we record and report the testing work that has been done.

- we manage the testing work, which includes understanding the current status of testing,

analyzing product risk, scoping and assigning testing tasks.

All of these activities can be helped with tools.

Distinguish between checking and testing.
We find it necessary to distinguish between checking and testing. Checking is the process of

making evaluations by applying algorithmic decision rules to specific observations of a product. This

is different from the rest of testing in one vital way: it can be completely automated. Checking is an

appropriate place to use that word “automation.”

In testing, we design and perform experiments that help us develop our understanding of the

status of the product. This understanding is an interpretation; an assessment. But it is not a fact.

Simple facts are arguably “verifiable,” but quality is never a simple fact. Quality is a working

hypothesis. When you exercise software and fail to spot a specific problem, you have not proven

or demonstrated that “it works.” All you know is that you haven’t yet recognized a failure. All you

have demonstrated is that the product can work. The product may have failed in a subtle way you

did not or cannot yet detect., Maybe it works fine now, but won’t work ten minutes from now. So

does it really, truly, deeply work? No output check can tell you that. No collection of output checks

can tell you that.

Indeed, any advertiser, late-night TV pitchman, or stage magician can show you that something

appears to work. Our job as testers is not to obey the ad, swallow the pitch, or believe the trick.

Our job is to figure out what the ad leaves out, where the product doesn’t meet the claims, or how

the magician might be fooling us. Although routine output checking is part of our work, we

continually re-focus on non-routine, novel observations. Our attitude must be one of seeking to

find trouble, not verifying the absence of trouble—otherwise we will test in shallow ways and

blind ourselves to the true nature of the product.

162

A Context-Driven Approach to Automation in Testing

Third: Explore the many ways to use tools! 8

Evaluating quality is a task that requires skillful, complex, non-algorithmic investigation and

judgment. That task can be supported and accelerated by tools, but it cannot be performed by the

tools themselves.

Checking is important.
Good checking is a subset of testing. Checking is not the same as testing in the way that biting is

not the same as eating; tires are not the same as cars; and spell checking is not the same as editing.

Good checking is always a product of— and embedded in— the processes of designing,

implementing, and interpreting those checks, which are human activities; which constitute testing.

Testing gives checking its value and meaning. Whereas, checking keeps testing grounded.

Automated checking is a tactic of testing, and can have considerable value. Programmers who

adopt automated checks into their coding practices can provide themselves with fast, inexpensive

feedback. Checking through an API beneath the GUI level can be particularly useful. In designing

such low-level checks, programmers and testers can profitably work together.

We are more doubtful of automated checking at the GUI level. GUIs are notoriously fussy. Because

non-technical people can see them and discuss them, GUIs may change much more capriciously

than the underlying interfaces that only programmers see. This can lead to a large, expensive

maintenance effort just to keep the simple checks running. Moreover, GUIs are designed to feel

natural and comfortable for people, not for other software. You may need a skilled full-time

programmer to maintain all the code necessary to attempt to simulate a speedy but unskilled

human tester. That is probably not a money-saving proposition.

Third: Explore the many ways to use tools!
The skill set and the mindset of the individual tester are central to the responsible use of tools.

When we say this, however, some people seem to hear us saying that tools are not important, or

that context-driven testers hate tools. Nothing could be farther from the truth.

Let’s catalog some of the many ways tools help us in testing:

● In design; we use tools to help us

– produce test data (tools like spreadsheets; state-model generators; Monte Carlo

simulations; random number generators)

– obfuscate or cleanse production data for privacy reasons (data shufflers; name

replacers)

– generate interesting combinations of parameters (all-pairs or combinatorial data

generators)

– generate flows through the product that cover specific conditions (state-model or flow-

model path generators)

163

A Context-Driven Approach to Automation in Testing

Third: Explore the many ways to use tools! 9

● In product interaction, we use tools to help us

– set up and configure the product or test environments (like continuous deployment

tools; virtualization tools; or system cloning tools)

– submitting and timing transactions; perhaps for a long time; at high volume; under

stress (profiling and benchmarking tools)

– encode procedures like operating the product and comparing its outputs to calculated

results (this is automated checking).

– simulate software or hardware that has not been developed yet; or that we do not have

immediately available to us (mocking or stubbing tools)

– probe the internal state of the system and analyze traffic within it as testing is being

performed (instrumentation; log analysis; file or process monitors; debugging tools)

● In evaluation, we use tools to help us

– sort, filter, and parse output logs (text editors; spreadsheets; regular expressions)

– visualize output for comparative analysis (diffing, charting and graphing tools,

conditional output formatting)

– develop, adapt and apply oracles that help us recognize potential problems (source file

or output comparison tools; parallel or comparable algorithms; internal consistency

checks within the application; statistical analysis tools)

● In recording and reporting, we use tools to help us

– record our activities and document our procedures (note-taking tools; video-recording

tools; built-in logging; word processing tools; user interaction recording tools)

– prepare reports for our clients (mind maps; word processors; spreadsheets;

presentation software)

● In managing the testing work, we use tools to help us

– map out our strategies (mind maps, outline processors, word processors)

– identify what has and has not been covered by testing (coverage tools; profilers; log file

analysis)

– preserve information about our products, and to aid other people in future support and

development (wikis; knowledge bases; file servers)

And this is an incomplete list of the ways in which we use tools to help us. Moreover, we use tools

to help us produce the tools that we use.

You have probably noticed how we repeatedly said “We use tools to help us...” We have chosen

these words deliberately to emphasize once again that tools don’t do testing work; tools help testers

to do testing work. In conversation about testing, tools may be important, but the center of testing

must be the skill set and the mindset of the individual tester.

Let your context drive your tooling.

164

A Context-Driven Approach to Automation in Testing

Third: Explore the many ways to use tools! 10

By “context”, we mean the set of factors that should affect the decisions of a responsible tester.

Generally speaking, a craftsman who has both the skills and intent to select and apply the

appropriate tools and methods for any given context can be called context-driven. More specifically

the Context-Driven school of software testing is a paradigm of testing based on the following

principles:

1. The value of any practice depends on its context.

2. There are good practices in context, but there are no best practices.

3. People, working together, are the most important part of any project’s context.

4. Projects unfold over time in ways that are often not predictable.

5. The product is a solution. If the problem isn’t solved, the product doesn’t work.

6. Good software testing is a challenging intellectual process.

7. Only through judgment and skill, exercised cooperatively throughout the entire project, are

we able to do the right things at the right times to effectively test our products.

These principles were written by Cem Kaner, James Bach, and Bret Pettichord, and first published

in their book Lessons Learned in Software Testing: A Context-Driven Approach, which is the seminal

book on Context-Driven thinking.

Note that if you are working in a way that solves the problems that exist in your environment, you

may be doing context-specific work without necessarily being context-driven. To be context-driven

you must be ready and able to change the way you work if and when the context changes. That’s

why the Context-Driven community focuses on developing skills and sharing experiences across

many kinds of projects and technologies. This is why we foster peer conferences dedicated to

conversation and debate.

How specifically does context drive tooling?
Context drives tooling through the activity of ongoing problem-solving. We do that by developing

in our minds various understandings, including:

 what surrounds us and our place in that world
 our clients and our mission
 other people involved and what they are trying to do
 tools and techniques available to us
 actions we could take and the effects they may have
 the immediate costs (and time) of those actions
 the long term costs of those actions
 the value of learning from trying new things

165

A Context-Driven Approach to Automation in Testing

Third: Explore the many ways to use tools! 11

Figure 4

These understandings may be

thought of as spaces that we

explore throughout our projects

and careers. As we learn and grow,

during the course of our projects

and careers, we get better at

navigating them.

What we do with those

understandings ultimately results

in mental calculations and decisions

along the lines of Figure 3. In

context-driven work, our choices

are guided not according to a fixed

script of “best practices” but rather

by dynamically evaluating context

and selecting, designing, or adjusting

our actions to solve the problems

that we encounter. We don’t simply look at whether a particular strategy is worth doing in and of

itself, such as strategy B in the diagram, where you can see that its value outweighs the risks and

the costs. We also compare that to other strategies that might be even better, such as strategy A.

Yes, these decisions may be biased, as

in Figure 4, perhaps because we

unconsciously veer toward things we

know and away from potentially

wonderful new ideas that we aren’t yet

comfortable with. But still, we strive to

make decisions based on merits rather

than following the dictates of fashion or

arguments from authority. In context-

driven testing, we don’t idolize “best

practices.”

The answer to the question of how

context drives tooling is: we read the

situation around us; we discover the

factors that matter; we generate

options; we weigh our options, and we

build a defensible case for choosing a

Figure 3

166

A Context-Driven Approach to Automation in Testing

Third: Explore the many ways to use tools! 12

particular option over all others. Then we put that option into

practice and take responsibility for what happens next. All along we

are learning and getting better at this.

Building a test strategy and determining how to use tools to fulfill

that strategy is an evolutionary process. No one who says “do it

right the first time” has ever really done anything difficult right the

first time. We become able to do things well partly via the

experience of doing them badly. We often learn how to develop

powerful, polished tools by developing cheap, disposable tools—

and then throwing them away and applying what we’ve learned.

Developing software also means developing our approaches to

testing it.

Context-driven behavior tends to be highly exploratory because the

practitioner is responsible, at every turn, for the quality of the

work—and not just the immediate work, but also the overall

strategy. If you are not just following instructions handed down

from a boss or bureaucrat, then you have to evaluate the situation

and frequently adjust your practices to get the best result you can.

This also means that Context-Driven practitioners think not only

about efficiencies, but about contingencies as well.

Approaching test tooling in a context-driven way means we don’t

play down the problems that tools have. We try to face them

forthrightly. This can make us look rather pessimistic about certain

ways of using tools, though, so it is a special challenge to remind

ourselves of the benefits of tooling and to move toward the kind of

tools that provide more of those benefits.

Invest in tools that give you more freedom in more
situations.
So, how does a Context-Driven tester approach tools and their use?

Well, there are no “best tools” in the Context-Driven world. Indeed, there are no dedicated “test

tools” in the Context-Driven world. Any tool can be a test tool. Any tool might be useful. But we can

suggest, all other things being equal, factors that make some tools more generally preferable. In

good Context-Driven fashion, we acknowledge at least one exception for each heuristic:

1. Tools that support many purposes are preferable to those optimized for one purpose. Some

tools are designed with specific process assumptions in mind. If you work in a context

where those assumptions apply, you are fine. But what if you decide to change the process?

Will your tools let you change? In changing contexts, tools that are simple, modular, or

Do We Reinvent
Every Wheel?

In practice, very little we

do is designed from

scratch. We collect and

apply reusable heuristics

by which we quickly

solve common

problems. We don’t call

these “best practices,”

because they aren’t.

They are patterns we

find useful in particular

situations, and we apply

them mindfully. This

involves looking to the

cost, value, and

contingencies of any

given heuristic; and it

involves ongoing re-

evaluation of our

process.

167

A Context-Driven Approach to Automation in Testing

Third: Explore the many ways to use tools! 13

adaptable tend to be better investments. Tools that operate through widely used interfaces

and support widely used file formats are more easily adapted to new uses. Note that a tool

may have only one major function, such as searching for patterns in text, and yet be a good

fit for many purposes and many processes. Exception: If a tool happens to fulfill its one

purpose far better than alternative tools, it might be worth the trouble of making room for

it in your toolbox.

2. Tools that are inexpensive (or free) are preferable to expensive tools even in many cases

where the expensive tools are more powerful. This is partly because of “sunk cost bias.” The

more money management pays to acquire a tool, the less acceptable it is to stop using the

tool even if the tool is obviously unsuited for the purpose at hand. Furthermore, free tools

invite us to experiment with different techniques. Experimenting is absolutely necessary in

order to develop the skills and knowledge we need to make informed decisions about our

processes. Exceptions: Remember there is more to cost than the purchase price. An

apparently inexpensive tool may cost more in the long run if it requires extraordinary

maintenance. Also, an expensive tool might be the only tool that has the special capabilities

that you seek.

3. Tools that require more human engagement and control are preferable to those that require

less. This is due to a syndrome called “automation complacency,” which is the tendency of

human operators to lose their skills over time when using a tool that renders skill

unnecessary under normal circumstances. In order to retain our wits, we humans must

exercise them. Tools should be designed with that in mind, or else when the tool fails, the

human operator will not be prepared to react6. Exception: We may genuinely value the

power and convenience that the tool gives us more than we value the skills and awareness

that we lose in the process.

4. Tools that are supported by a large and active community are preferable to those that are

not. The more people who use a tool, the more free support will be available and the more

libraries, plug-ins, or other extensions of that tool. This increases the value of the

investment in learning that tool, while reducing the learning curve. (The R language is a

good example. It’s a powerful and general purpose data analysis tool. Lots of researchers

use R, lots of books about it are on Amazon.com, and there are hundreds of libraries that

provide special capabilities beyond the defaults capabilities of the tool.) Exception: Just as

in the case of expensive tools, sometimes the value you get from a tool is so important that

it overrides concerns about support.

5. Tools that can be useful to non-specialists are preferable to those that are not. We’re talking

about tools that lower the cost of getting started; that afford ease of use; that don’t depend

on proprietary languages; that have lower transfer and training cost. Microsoft Excel and

spreadsheets in general provide a good example. It is possible to use Excel in a very

6 See Nicholas Carr, The Glass Cage, and Lisanne Bainbridge, "Ironies of Automation", Automatica, Vol. 19, No. 6. pp.
775 779, 1983.

168

A Context-Driven Approach to Automation in Testing

Third: Explore the many ways to use tools! 14

specialized and sophisticated way, but there is a lot Excel can do for you, even if you have

only basic skills with it. Exception: Sometimes it can be good for a tool to dissuade non-

specialists from using it, because non-specialists may not be capable of using the tool

wisely.

6. Tools over which we have control are preferable to

those controlled by others. Good tools are at the very

least configurable to your specific needs. An open

source tool allows you to control every aspect of it, if

you need to do that. Apart from the expense,

commercial proprietary tools prevent you from

adding new features and fixing critical bugs.

Proprietary tools may be modified in ways that

disrupt your work at inconvenient times, and you

have no control over that schedule. Exception:

Sometimes not having control over a tool is a good

thing, because you are forced to use standard

versions and configurations which allow you to share

work more easily with others who use that tool.

7. Tools that are portable across many platforms are preferable to those restricted to a single

platform. One aspect of context is the operating system or hardware platform. Cross-

platform tools obviously work in a wider context. Exception: A tool may provide value that

is important enough to offset its lack of cross-platform compatibility; or it may offer

interoperability with similar tools on those other platforms.

8. Tools that are widely (or easily) deployed are preferable to tools that aren’t. A primary

problem of tool use is getting the tool in the first place. Some tools require complicated

installation and configuration. Some tools may require special permission or expenditure.

This can require negotiating with the IT department, managers, or co-workers. Exception:

Some tools may be worth this trouble.

Invest in testability7.
The success of any tooling strategy depends in large part on how well your technology affords

interactions with tools. This is why it pays to build testability into your products. From a tool

perspective this means two big things: that your product is controllable by tools via easily scripted

interfaces, and that its states and outputs are observable by those tools. For this reason, browser

based products tend to be more testable while apps on mobile devices are less testable. Products

with standard controls are more testable than products with custom controls.

7 See http://www.satisfice.com/tools/testability.pdf

Intrinsic Testability

Certain aspects of the product

design enable tool-supported

testing. These include:

 Observability

 Controllability

 Algorithmic Simplicity

 Decomposability

 Compliance to Standards

169

A Context-Driven Approach to Automation in Testing

Let’s see tool-supported testing in action! 15

Consider making testability review a part of each iteration, and otherwise instill this thought

process early in your projects. Any serious attempt to make tooling work must go hand-in-hand

with testable engineering.

Let’s see tool-supported testing in action!
We now present you with three examples of how tools help testing. The first example involves no

checking. The second is checking done partly with tools and partly by the tester. The third is fully

automated checking through the GUI (and gives you an idea of why we generally avoid doing that).

These examples are worked from the perspective of the independent tester, rather than the

developer. We will demonstrate by describing some of our testing of FocusWriter, a word

processor with a minimalist design, intended to create a distraction-free environment that helps

authors write novels.

CASE #1: Tool use without checking.

James wanted to test FocusWriter. He opened his browser, navigated to the gottcode.org Web

site, downloaded FocusWriter, extracted it from its .zip file, and played with it.

Are there any tools in use here, so far? Most testers would say no. But seemingly, according to our

definition, the computer is a tool of some kind. Various parts of the computer are tools, such as the

mouse, the monitor, and keyboard; hardware. The web browser James used to download the

product is a software tool. The website he accessed is a tool, too. The Internet itself is a tool. Yet,

no one feels that these are “testing tools”, nor that this activity is anything like “test automation.”

Why? Because none of these things are tools with respect to anything unique about testing.

Instead, they comprise the fabric of ordinary computing; ordinary use of the product. When we

speak of tools in testing, we do not mean the natural processes of using the product, but rather

contrivances applied for the purpose of accelerating or enabling testing over and above ordinary

human interaction with the product.

James opened SnapTimer and set a 15-minute rolling timer. He opened Evernote and started a new

note titled “FocusWriter Test Session.” Then he Googled FocusWriter and thumbed through the top

hits. In this way, he discovered that FocusWriter is an open source app.

170

A Context-Driven Approach to Automation in Testing

Let’s see tool-supported testing in action! 16

Strings extracted from source code
(as of step 9):

Left
Line Spacing
List all documents
Loading settings
Loading sounds
Loading themes
Longest streak
Manage Sessions
Margin:
Memo:
Minimum progress for

streaks:
Minutes:
Misspelled:
...
The requested session

name is already in use.
Unable to load

typewriter sounds.
Unable to open archive.
Unable to overwrite

'%1'.
Unable to rename '%1'.
Unable to save '%1'.
Unexpectedly reached end

of file.
...
&About
&Add
&Bold
&Change
&Close
&Copy
&Daily Progress
&Decrease Indent
&Edit
&File
&Find
&Find...

The tools here are SnapTimer, Evernote, and Google. These are not part of the FocusWriter user

experience, and they are not employed in simulation of what a user would do in the ordinary

business of using FocusWriter. Therefore, these are bona fide test tools in this case. They are

applied specifically for testing purposes, even though they may not have been designed for testing

per se.

More tool use quickly followed:

1. James located the source code on Github. (Google)

2. He used Git to download that code. (Git)

3. He unzipped it. (7Zip)

4. He opened a Windows command prompt. (CMD)

5. From the top of the source directory he used grep to

search for the string “error.” (grep)

6. He noticed this line in the output: m_error =

tr("Unable to open archive."); On the conjecture that

"tr" means translate, and therefore may be the formal

mechanism for displaying localized message strings, he

used a regular expression search to extract every

associated string from the source. (grep with regex)

7. He extracted the strings themselves using this Perl

program: while(<>) { foreach (/tr\("(.*?)"\)/g) {

print "$_\n" } } (Perl with regex)

8. He used Notepad++ TextFX plugin to sort the result

and eliminate duplicates. (Notepad++ with TextFX)

9. He grouped all commands together, all keyboard

shortcuts together, all messages to the user together.

(Notepad++)

10. At some point during this process, the 15-minute timer

chimed, which alerted James to the need to update his

notes and check in on his test charter. (SnapTimer and

Evernote)

We see plenty of tool use here, but most people would not call this “test automation.” So what? It

is tool-supported testing. Testers should think about tools as helping them in any aspect of testing.

This case also shows the power of a tester who already knows how to use basic, free, technical

tools and possesses a foundation of technical knowledge sufficient to read and write code. Not all

testers need that—but we suggest all testers need access to someone who does have that skill,

such as a toolsmith on the team.

171

A Context-Driven Approach to Automation in Testing

Let’s see tool-supported testing in action! 17

Figure 5
Figure 6

The use of tools in this case led to interesting results:

● Discovery of functionality referred to inside the product (“&Daily Progress”) but not yet

implemented.

● Discovery of error messages relating to previously unknown functionality.

● The basis for systematic testing of error handling.

CASE #2: Tool-support via patterned data generation for better coverage and a
powerful oracle.
James frequently uses tools to generate special test data. One of his favorite tactics is called a

“simplified data oracle.” For FocusWriter he used that to test the Scene List and Filter functions.

The Scene List is a feature that allows the author to navigate, select, and move scenes more easily.

A scene is a block of text delimited by a specific text marker, such as “##.”

To test the Scene List we need a document that has scenes in it. That’s easy. We create some text

and put some scene dividers into it, as in Figure 5. This text will display in the Scene List as in

Figure 6. Let’s say this looks good. Let’s say it is exactly what we wanted to see.

Now we could automate this as a typical output check. But tools can do so much more for us. So,

James decided to write a program that would create thousands of scenes, and identify them in a

specific way that would help us track whether they were in the correct order in the Scene List. In

other words, it is a combination of a stress test and a correctness check (to be performed by a

human tester) that helps us see if there is a bug in how the Scene List displays and sequences the

scenes. It helps us test the scene divider handling for a variety of different divider strings (because

the scene divider string is configurable) as well as scene filtering functionality.

172

A Context-Driven Approach to Automation in Testing

Let’s see tool-supported testing in action! 18

The program he wrote results in the file shown in Figure 7, which contains a total of 5,050 sub-

sections. If the scene divider string is set to “scene” then the Scene List shows Figure 8.

Figure 6

Figure 5

173

A Context-Driven Approach to Automation in Testing

Let’s see tool-supported testing in action! 19

Now, by filtering on “07.” it should pick out only seven scenes, wherever they are in the document,

and display them in order in the Scene List panel. This is in fact what happens.

This is testing with a big boost from a tool. The tester can play. The tester can move scenes, filter,

edit the document, or whatever. All the while, his test coverage will be deeper and his oracles

sharper because of this patterned data. The tester is not limited to using the data, but can also edit

the program that created the data to create even more interesting data. In fact, the version of the

data you see, above, is the fifth refinement of the original concept.

Figure 7

174

A Context-Driven Approach to Automation in Testing

Let’s see tool-supported testing in action! 20

CASE #3: Automated checking.
We wanted to demonstrate full-on automated checking, while

at the same time staying with the FocusWriter example.

FocusWriter does not provide an API for testing, which

required us to automate through the GUI, and so the

headaches began.

The high concept for the check was straightforward: perform

a series of operations in FocusWriter that touch several

features, change a document in a few ways, but result in the

same output as we had at the beginning. A check that ends

with the same state it began with is called idempotent.

Idempotency is a useful heuristic because the process should

be repeatable any number of times without regard for any

progressive issues with system state—and if the state of the

system interferes with the automation, that would be an

interesting test result.

James proposed a process to be automated:

1. Delete any old temporary test files.
2. Start FocusWriter.
3. Load the Three Musketeers text file.
4. Search and replace all instances of lower case “e” with “~”

(chosen since it does not appear in the text).
5. Save the file as type ODT.
6. Close the file.
7. Close FocusWriter.
8. Open FocusWriter.
9. Open .ODT file.
10. Search and replace all instances of “~” with lower case “e.”
11. Save as TXT in new file.
12. Compare original with new text document.
13. Log result.
14. Exit FocusWriter.

This is designed to exercise saving (two kinds of files), loading (two kinds of files), starting,

stopping, searching, and replacing. It comprises a bit of a stress test, because of the size of the

Three Musketeers novel (1.3 million characters), but mainly it would be useful as a sanity check.

At James’ suggestion, Michael started to tackle the task using AutoHotKey, a Visual-Basic-like

Windows scripting language. He soon ran into a problem: he was unable to query and confirm the

state of the list box control by which the user chooses the file type. That obstacle and his

unfamiliarity with AutoHotKey prompted him to switch to Ruby, with which he has a good deal

What about
the unit level?

Automated, low-level checking

is most famously embodied by

the practice of “test-driven

design” (which is really “output-

driven design” but now it’s too

late to rename it). We are not

going to cover it here because

it’s too big a subject and already

gets so much coverage in the

Agile world.

Automating low-level checks is a

powerful practice that can

improve testability and make

quality easier to achieve. Like all

checking it requires skill and

forethought to pull off, and it is

blind to many bugs that occur

only in a fully integrated and

deployed system. Still, it is

generally much less trouble and

expense than GUI-level

checking.

175

A Context-Driven Approach to Automation in Testing

Let’s see tool-supported testing in action! 21

more experience. Ruby has several libraries that provide support for the Windows API. He soon

found the RAutomation library which is billed as “a small and easy to use library for helping out to

automate windows and their controls for automated testing”. Like many such open-source

offerings, it is sparsely documented, but with a few minutes of experimentation, Michael was

confident that he would be able to make sense of it and put it to work.

RAutomation proved to be intuitive and straightforward to use, but Michael quickly discovered

that certain aspects of FocusWriter made automating the process tricky. Among other things,

FocusWriter appeared to implement list boxes such that RAutomation (as AutoHotKey before it)

could not determine the currently selected option for the current file type; Michael had to track

this by other means. Saving a file would sometimes cause a confirmation dialog to appear,

sometimes not. Several dialogs shared the same caption (“Question”), even though the prompts

and options within were different. Frequently the script would initialize actions before the

application was ready for them, requiring wait states of one kind or another. All of this required

loops of experimentation, discovery, learning, and revision that, in the end, took hours. Among

other things, Michael wished that he had been part of the development process for FocusWriter to

appeal for better testability.

After much fiddling Michael succeeded in getting the process running reliably, but when James

used the same script on his own system, it was not able to find and start FocusWriter! After an

hour of investigating together, we abandoned Ruby.

We considered our problems so far. Perhaps what we needed was a tool optimized for interacting

with the product via the GUI. We’ve heard of HP Unified Functional Testing and its predecessors

from testers forever. HP says “HP UFT software automates testing through an intuitive, visual user

experience that ties manual, automated, and framework-based testing together in one IDE. This far-

reaching solution significantly reduces the cost and complexity of the functional testing process while

driving continuous quality.”8 To test this claim, we downloaded the trial version. After another full

hour using the record and playback facility of HP UFT, we were able to get FocusWriter started,

but could not get HP UFT to recognize the application window. It recognized Notepad, but there

seemed to be something about FocusWriter (the fact that it is built with the QT toolkit?) that made

it invisible to the HP tool. HP UFT would record a script, but then was not able to run its own

script! We changed settings and edited the script in different ways, all to no avail.

Perhaps another five minutes or five hours would have gotten us past the problems with HP UFT.

Neither of us are expert in the use of this particular GUI automation tool, and some experience

with it might help us get around some of the obstacles. Perhaps our programming skills would

accelerate our learning curve. Yet tools like this are often marketed in terms of “test automation

without programming skills”. Here’s a typical example: “Test automation alleviates testers'

8 http://bit.ly/1j9VUCL, retrieved October 30, 2015.

176

A Context-Driven Approach to Automation in Testing

Let’s see tool-supported testing in action! 22

frustrations and allows the test execution without user interaction while guaranteeing

repeatability and accuracy.” Claims like these were being made 20 years ago. Meanwhile, the self-

driving flying cars are still very much on the ground, with human drivers behind the wheel.

As a final effort, James used AutoHotkey to record a macro that performed the basic script.

Success!

We found bugs…but not because we automated the check.
During this experiment in checking, we found that the final TXT file did not match the original one.

That is all that checking can do: report some sort of inconsistency that must then be investigated.

Our subsequent investigation of the inconsistency led to two bugs:

1. FocusWriter writes ODT files in a manner that Microsoft Word complains is invalid
(although it is apparently able to rescue the content).

2. FocusWriter reads ODT files incorrectly, causing one extra line and ten new spaces to be
inserted wherever there is a line that begins with at least two leading spaces.

We reached our understanding of the first problem because we thought to use Microsoft Word

and OpenOffice as “comparable product” oracles for the evaluation of the ODT file saved by

FocusWriter. We reached our understanding of the second problem using a bevy of tools:

 WinMerge to analyze the text differences between the files

 Frhedit to analyze the hexadecimal differences between the files

 Perl to create and modify test files with various properties in order to test our hypotheses

 7Zip and Notepad++ to examine the XML content of ODT files

 Excel to build a spreadsheet that predicted size changes

 Wikipedia/Google to study UTF-8 encoding

Note that automating the check had little to do with finding and investigating these bugs. It didn’t

save us any time. In this case, so far, the automated check is a cost without benefit. The check itself

in its un-automated form—specified by a thinking tester, and carried out interactively during the

process of automating it—simply gave us an indication of a problem. Then, skilled testers carried

through with the investigation (with the help of tools) that systematically pared down potential

factors to home in on the few that mattered.

The foray into automated checking took far more time than the first two cases. We learned things

in the process of developing this automated check that might have made further checking easier to

some degree, especially if our experience could inform better testability. Yet we wonder: if we

were to create a library of checks, would the value of such checks match the development cost?

The maintenance cost? The opportunity cost?

177

A Context-Driven Approach to Automation in Testing

Let’s see tool-supported testing in action! 23

It may be that, sometime in the future, another bug will creep in to the product that this particular

check will notice. If there are changes to this area of the product in the future, they will probably

cause our check to fail irrespective of whether the failure is due to a bug in the product or in the

script. If there are no changes in this area, the check will not fail, but probably also will not be

worth running. It is often difficult, ahead of time, to choose which checks will be worth having

automated, and which will turn out to have been white elephants. A lot of this is a matter of

guessing about risk and change. This involves skill, experimentation and learning.

Why is automating interactions through a GUI so difficult?
After hearing this story, some “test automators” might claim that they don’t have these kinds of

problems, and if they did, they would be able to get around the problems easily. In saying so, they

would be completely missing several points.

GUIs are designed for able-bodied humans, who don’t have the same trouble finding and

interacting with products as robots do. In fact, our tools fell victim to the same kinds of barriers

presented to people who suffer from disabilities and yet try to use modern technology.

Accessibility is a widespread problem in computing9 for

people and tools alike. Just as success with one accessible

product does not disprove the existence of the accessibility

problem in general, pointing to one trouble-free use of a tool

to control an app doesn’t disprove our general claim, which is

this:

GUI-level scripting is fiddly. It’s fussy. It fails suddenly in

unexpected ways. It’s notoriously problematic. It requires

learning not only about the application and the tool, but also

about how they will interact. We both learned this in the 80’s

and 90’s10, we’ve seen it ever since, and we are seeing it now.

Beyond the accessibility issue, think about it. Even something as simple as saving a file, which is

easily navigated by a human, becomes an exercise in pure pedantics when you attempt to program

a machine to do the same thing. When you save a file, the application may or may not present

dialogs that are distinguishable using a particular approach; it may or may not use libraries or

controls that are recognized by the test framework you’re using. On any given run, the application

may or may not be pointed to the right directory; it may or may not ask you if you really want to

overwrite another file; it may or may not refuse to proceed because that other file is locked by

another process or because disk space ran out on your USB stick. The application may or may not

9 http://arc.applause.com/2015/11/02/mobile-accessibility-end-user
10 See James Bach, “Test Automation Snake Oil”, http://www.satisfice.com/articles/test_automation_snake_oil.pdf

What Every
Toolsmith Knows

“GUI-level scripting is

fiddly. It’s fussy.”

178

A Context-Driven Approach to Automation in Testing

Let’s see tool-supported testing in action! 24

be interrupted by some other application during this process. It may or may not take an unusually

long time to save.

Humans take all these eventualities in stride—we barely notice them unless they seem wrong! Not

so for programs. Any possibility that has not been anticipated and not expressly programmed is a

potential stumble for the script, which means another round of troubleshooting, debugging, and

testing for the person trying to program it. Even if you think you could do better with FocusWriter

using your favorite tool, we claim that the kinds of problems we have highlighted are not unusual

in tooling generally, and that they are normal to GUI-level user simulation tooling, regardless of

your skill level, industry, or product type.

Although Michael succeeded with Ruby and James succeeded with AutoHotKey, without more

work, success took the form of rough prototype scripts. These are very brittle. The smallest change

in the application, or in the saved state of the application, or in the data set may disrupt the script

in a way that requires tuning or a complete rewrite.

You can make GUI checking more resilient in the face of product change, at a price…
As one of our reviewers, Ben Simo, noted, we can certainly make GUI checks less brittle in the face

of change, but the very factors that make them less brittle usually make them less powerful, too,

because we achieve greater resiliency by sacrificing certain sensitivities. For instance, we may

filter out time stamps or user names, or we block out sections of screenshots. It may be okay to

ignore the current user name when we are running the tests with accounts called “TestRobot6” or

“TestRobot22” and want to use the same logic to check screens in both cases, but what if there is a

legitimate bug whereby the user’s name is wrongly displayed? Our modified check won’t spot it.

Adding such special case logic into the check code also increases the complexity of that code,

which creates brittleness of a different kind: an increased likelihood that we will break the code

when we try to improve it.

We may be completely successful in suppressing certain disruptions to GUI automation, but those

same disruptions may give us information about the product that, as human users, we would

easily understand as significant. For instance, we can implement a time delay in checking output

from a process in order to assure that the process is complete before we attempt to process the

output, but that means we won’t notice if it gets progressively slower and faster in its response

times within that time delay. Testers don’t just numbly watch the world go by. Real testers are not

just idle product tourists—we critically analyze what we see. But if we outsource our “seeing” to

the computer, we cannot be critical of what it sees, and the computer doesn’t know how to be

critical.

As you navigate these troubles, you will probably be caught up in a more insidious pattern: GUI-

level checking distracts testers from performing deep tests that examine complicated or subtle

functional behaviors. This is because you have to keep the checking simple. If you pour complex,

interesting data and interactions into your checks, you will create huge headaches for yourself in

179

A Context-Driven Approach to Automation in Testing

Automating actions is a tactic. It should not be a ritual. 25

coding and maintaining it. Imagine reproducing, in code form, just five minutes of your typical use

of your computer. Yikes. This is why GUI check designers focus on superficial interactions and

easily parsed outputs. It’s economically viable. It will allow you to add more “test cases” to your

“test suite”, but what it accomplishes is likely to be shallow testing. At the same time, all this effort

presents opportunity cost that robs you of time for deeper testing.

There are contexts in which automated checking is likely to be cheaper and more powerful.

Products that are built with testability in mind—scriptable interfaces and log files that can be

easily parsed—tend to be more amenable to automated checking. Products that have simpler

forms of input and output are easier to check programmatically. Automated checks closer to the

developer’s current task can afford quick change detection, fast feedback, and simpler repair.

Well-built, “unbuggy” products can be much easier to automate and to check.

These points we are making are not new. The first Los Altos Workshop on Software Testing, which

was the first organized gathering of the not-yet-named Context-Driven School of software testing

dealt with the problems of automating the interaction of an application through a GUI—and that

was way back in late 90’s11.

Automating actions is a tactic. It should not be a ritual.
In the Context-Driven world, we reject ritual. We embrace problem-solving. But this attitude is

only valid if problem-solving matters. Too often, automation (in both senses—artifacts and

enterprise) is pursued as an unquestioned good; stuff that dazzles people even when it

accomplishes little. Large tool companies and consulting firms aren’t much help, either: it’s not in

their interest to help you see a simpler, cheaper, more flexible way of doing things.

If your testing doesn’t really matter, except as a display for public relations purposes, then maybe

rituals are acceptable— but that cannot be so if your intention is to find important bugs before it is

too late. To fulfill that mission, you must develop an appreciation of the full spectrum of tools and

their applications to your work. Context-Driven testers apply tools in powerful ways to get testing

done!

11 Kaner, Cem, Improving the Maintainability of Automated Test Suites, p. 10, http://www.kaner.com/pdfs/autosqa.pdf

180

James Bach
 2/18/2007 11:54:00 PM

tait clinic.doc

TAIT ELECTRONICS

Rapid Testing Clinic

February 15
th
 and 16

th
, 2007

Event Overview

Six testers were assigned to test a new product feature using rapid testing methodology, under the

observation of James Bach. The testers were Andrew Robins, Josh Crompton, Sridhar “Raj” Kasibatla,

Matt Campbell, Dan Manton, and Judy Zhou. The product feature was dual-head radios. The event was

held in a dedicated conference room. Lunch was brought in, which allowed us two full uninterrupted work

days.

Andrew Robins served as overall test lead. James Bach served as commentator, facilitator, and part-time

scribe. Each of the testers had taken the Satisfice Rapid Software Testing class. The testers were chosen for

their testing skills and leadership qualities.

The goals of the clinic were 1) evaluate and coach the testers in their understanding and application of the

Satisfice Rapid Testing methodology, 2) give the testers experience in how a testing clinic might be run, 3)

test dual-head radios, and 4) prepare to test dual-head radios better going forward.

Process Overview

This is how the event unfolded:

Day 1

1. Set up equipment and room for testing. This was done the night before the event began.

2. Outlined and discussed new, changed, and risky areas of the product. See

whiteboard snapshot and mindmap transcript.

3. Created reference diagram of dual-head radios. This served as a working reference for

test strategy and chartering.

4. Split into three testing pairs and set the charter for the first session. Everyone’s

charter for the first session was the same: recon. Set up and look over dual-head functionality in

action, learn how it works, observe it in action, get to know the risk areas first hand.

181

2

5. Performed 90 minute test session. As expected much of the first session was spent

attempting to get the equipment properly set up. The bug database was checked several times to

compare observations with known bugs. Basic misunderstandings about how dual-head radios

work, such as how databases are updated and used, were revealed. This is characteristic of

“high learning” exploratory testing. James filmed some of that process.

6. Debriefed the sessions together. Bugs and setup problems were discussed. We also

discussed how session-based productivity metrics work, and the teams estimated their “TBS”

proportions as well as “on charter” test percentages. James explained how debriefings worked

and answered some questions. We also called Jeremy, the analyst, into the room to answer

questions about a mysterious feature of the product. In the end, we noted the mystery but

Andrew decided it was not important enough to pursue at that time.

7. Performed 60 minute session. We continued on the same charters (“recon sessions”). As

expected, there was more testing and less setup in the second session.

8. Debriefed the sessions together. Two teams felt like they had reached a plateau and

were ready to move on from recon work.

9. Set up an overnight stress test. Josh scripted something quick and dirty to keep the heads

going all night.

10. Worked up combination tests (evening). James wrote software to demonstrate

combinatorial state transition testing.

Day 2

11. Guided brainstorm of test ideas and product elements using the Satisfice
Heuristic Test Strategy Model. This began with a silent 10 minute review, followed by

90-minute discussion and elaboration of ideas.

12. Performed 75 minute “analysis and coverage” test session. This session was

focused on understanding a specific sub-feature or risk better.

13. Debriefed the sessions together. Bugs were discussed. We called in a firmware

programmer to help us understand database synchronization issues.

14. Made master list of bugs found.

15. Performed 75 minute final test session. One team tried some of James’ generated state

transition tests. Another team worked up a table to bring more structured coverage to the

brown-out tests.

16. Final debriefing with Heiko and bug list update.

182

3

.

Artifacts

Various pictures and videos of the process can also be found accompanying this document.

Day 1: Briefing on Changed/Risky Areas

Transcribed from the whiteboard, it was decided not to worry about language support testing. A lot of

testing was to be focused on neck comms, audio sub-system, primary/secondary interactions. Also looked

at delays and brown-outs.

183

4

Day 1: Dual-Head Diagram Evolution

DB

!!Hook

PTT
Head (P)

PC
Mic

Covert

DB

!!Hook

PTT
Head (S)

PC
Mic

Covert

Splitter

(optional)

Power DB

Torso

(optional)

PTT

PC
Mic

 DB != DB, DB == DB

 Disconnect/Connect

 Start/Stop/Restart/Reset

 On hook/off hook

 PTT Y/N

 Signal arriving at antenna

 No testing for extender box?!

Coverage
 Screen Match

 Contrast/Volume Independence

 Muted/Unmuted

 Reset on Disconnect

 Reset on System Error

 Pops

Oracles
 Happy path

 Spam test

 Connection tests (failover)

 DB interactions

 Pairwise interactions

 Head interactions

 Time (leave it sitting)

Ideas

PTT Mic

Mic

PTT

Extender box Extender box

Extender box Extender box

184

5

.

Day 2: Product Element And Test Idea Brainstorm (lightface: categories, boldface:

ideas)

Test Techniques

 Function Testing

 Domain Testing

 Stress Testing

Soak testing

 Flow Testing

 Scenario Testing

 Claims Testing

 User Testing

 Risk Testing

 Automatic Testing

Project Environment

 Customers

 Information

 Developer Relations

 Test Team

 Equipment & Tools

 Schedule

 Test Items

 Deliverables

Product Elements

 Structure

Some units click/pop and others don’t

 Code

Software Feature Enabler

??? upgrade path for firmware? How do you upgrade it?

??? upgrading in situ? (on vehicle)

??? what if different heads have different firmware/hardware versions?

 Interfaces

??? Audio feedback issues with multi-head?

 Hardware

Splitter box

 ??? reduce audio quality?

Keypad microphone serial protocol

GPIO protocol

Remote kit variants

Different Band Torsos (sanity check)

 UHF

 VHF

Microphones

 Keypad

 Standard

 Dynamic

Control head variants

Neck Comms

 Cable length

 Timing issues

 Connections

 Brown out issues

 RF interference on cables

 Non-executable files

 Collateral

Installation guide for dual heads

??? ability remove the splitter box and connect directly

185

6

 Functions

 User Interface

Lockout between heads

 Interruption of some kind during lockout

(e.g. disconnection event, emergency mode)

 System Interface

Serial communication via secondary head by mistake

 Application

Autodetect of microphones

Software functions enabled/disabled

Software function enabling

??? Thermal shutdown? Thermal senors?

Security lock

Dual head menu

Hook switch listen-in mute

Listen in

Scanning mode vs. non-scanning mode

 Calculation

 Time-related

Audio lag from torso to the different heads

Transmit inhibit

Auto-power-down

 Transformations

Database changes

 Startup/Shutdown

Disconnecting and connecting a head (primary vs. secondary)

System reset

Power disconnect

Normal start

Normal shutdown

(??? Any way to start via system interface?)

??? Soft disconnect of a head? In situ, you may not be able to unplug it.

??? What if a head has malfunctioned in a way that denies service, and you

need to sever the connection?

Partial powerup scenario—can we get the head to power up without torso? One

head powered, another not?

 Multimedia

Exact bits on screen

Pops and clicks

 Error Handling

(??? Error messages? Can we get a list?)

 Interactions

 Testability

 Data

 Input

Editing scan group on one head, another head interferes (power off?)

Programming the radio, disconnect head before committing.

186

7

.

 Output

 Preset

(??? Configurable menu items that may relate to interactions between

heads?)

 Persistent

Database integrity on the heads (how do you know that the database is what

it should be?)

Contention between databases in each head

Legitimate/common ways that databases could be different between two heads.

Same mac address/priority?

 Sequences

 Big and little

Very large scan groups

Large numbers of channels

Lots of data for MPT which is redundant anyway

 Noise

Rattling

 Lifecycle

Initial configuration of database, plus sequences of changes, then

exporting and importing to another radio

 Platform

 External Hardware

GPS data display on heads

 External Software

 Internal Components

 Operations

 Users

 Environment

 Common Use

 Disfavored Use

 Extreme Use

 Time

 Input/Output

 Fast/Slow

 Changing Rates

 Concurrency

Quality Criteria Categories

 Capability

 Reliability

Memory leak issues?

 Error handling

 Data Integrity

 Safety

 Usability

 Learnability

 Operability

 Accessibility

 Security

187

8

 Authentication

 Authorization

 Privacy

 Security holes

 Scalability

 Performance

 Installability

 System requirements

 Configuration

 Uninstallation

 Upgrades

 Compatibility

 Application Compatibility

 Operating System Compatibility

 Hardware Compatibility

 Backward Compatibility

 Resource Usage

 Supportability

 Testability

Diagnostics?

 Maintainability

 Portability

 Localizability

 Regulations

 Language

 Money

 Social or cultural differences

Day 2: Bugs Found

Andrew/Josh

Day 1

 Can’t disconnect heads without special tool

 Problems with minimum volume

 Audible artifacts associated with keypresses on control heads (press and release)

 PTT spamming can cause system reset

 Keypress spamming can cause system reset

 Keypress spamming caused one instance of display overlay issue on secondary head

 Inconsistency in hook switch scanning and hook switch inhibit (hook switch scanning is

logically OR’d with inhibit; PTT inhibit is logically ANDed with inhibit)

Day 2

 Brown-out can occur on control heads without any indication to user.

 Ticking sound heard on receiving device while transmitting from another radio (possible test

environment issue)

 Ugly degradation in functionality during brown outs

 Power connector can be plugged in backwards

 Whole system impacted when power lost to splitter box

 Two situations where a recoverable brown out was not recovered from.

 After 20 minutes of non-activity system suddenly autoscrolled with no apparently input.

188

9

.

Matt/Raj
Day 1

 Can save a config file without members in the scan group

 Contrast can only be adjusted on one of the heads. (this maybe needs improvement, since it’s

confusing)

 In emergency mode, plugging a microphone into one of the heads causes mechanical sound to

be transmitted

Day 2

 If the volume is down while you scroll the volume is turned up automatically

 The hook switch monitor behavior is not updated when switching networks until hook switch

state changes.

 Should not be able to program only one head at once.

Dan/Judy
Day 1

 No way to differentiate which head is which in the selection box or in the device configuration

box

 Usage of priority field is unclear and confusing

 The selection box didn’t always appear

 Power up seemed too long compared to the single-head config.

 XPA would not read from the lowest priority head

 Didn’t reset after programming mode.

 Very inconsistent in reading that an incorrect frequency file was being uploaded to the radio

(sometimes error message occurred, and other times not)

 Lots of hanging comms to the radio.

 Name is blank by default

 Primary head inexplicably died, then sprung back into life (after some rattling)

 A channel is not really deleted even after channel delete message is displayed—must back out

of the menu

 PTT clunks are audible when audible tones operate on listening head.

 XPA always uses a default setting for the selection box instead of remembering the last setting.

Day 2

 If you’ve only got one head connected to the XPA and you try to read from the head it will not

read.

 Design issue: what is the point of being able to program two heads when there is no scenario

where they should be different? Someone should look hard at the database issue. XPA leads

you down a path that’s WRONG.

 If you are in programming mode and you unplug the secondary head the system does not

reset… XPA is in strange state.

 Should function keys stay with the head? Where should this information live?

Raj/Judy

Day 2

189

10

 Requirements issue: In emergency mode, if a head drops out, the other head should continue

operating.

 During non-stealth emergency mode, if a head drops out, the whole system dies, even if you

plug the head back in; if the secondary head is the one that drops out, then the system survives

until the end of the current transmit/receive cycle and then dies. (may not occur on first time

through… still investigating)

 While in stealth mode, the RSSI level is still being displayed.

 If you define power on state as power on always, then connect it to power, it doesn’t power on

 CTCSS tones are audible.

Dan/Matt
Day 2

 Seems strange that there is only one off-hook state for the system.

 When PTT is pressed before removing handset from hook, removal from hook does not put

radio in transmit mode until PTT is released and pressed again.

Day 2: Final Session Charter List

Andrew/Josh
 Recon of multi-head functions

 Continuation w/synchronized databases

 Brown-out #1

 Brown-out #2 (this time it’s tabular)

Dan/Judy
 Recon of multi-head functions

 Recon of multi-head functions #2

 Explore database capacity and legitimate differences in DB between heads

Matt/Raj
 Recon of multi-head functions

 Recon of multi-head functions #2

 Head disconnect and reconnect

Dan/Matt
 External Speaker functionality

Judy/Raj
 Two-headed emergency mode

190

Bibliography for Rapid Software Testing
Last revised: November, 2014

Alexander, Christopher, Sara Ishikawa, and Murray Silverstein. A Pattern Language: Towns,

Buildings, Construction. Oxford University Press, 1977.

Amdahl, Kenn, and Jim Loats. Calculus for Cats. Broomfield, Colo.: Clearwater Pub., 2001.

Andrews, Mike, and James A. Whittaker. How to Break Web Software: Functional and Security

Testing of Web Applications and Web Services. Book & CD. Addison-Wesley Professional,

2006.

Ariely, Dan. Predictably Irrational, Revised and Expanded Edition: The Hidden Forces That Shape

Our Decisions. 1 Exp Rev. Harper Perennial, 2010.

Austin, Robert D, Tom DeMarco, and Timothy R Lister. Measuring and Managing Performance in

Organizations. New York: Dorset House Publishing., 1996.

Bach, James. “Testing and Checking Refined.” Testing and Checking Refined, n.d.

http://www.satisfice.com/blog/archives/856.

Bach, James Marcus. Secrets of a Buccaneer-Scholar: Self-Education and the Pursuit of Passion.

Reprint. Scribner, 2011.

Ball, Philip. Critical Mass: How One Thing Leads to Another. 1st ed. Farrar, Straus and Giroux, 2006.

Barabasi, Albert-Laszlo. Bursts: The Hidden Pattern Behind Everything We Do. Dutton Adult, 2010.

———. Linked: How Everything Is Connected to Everything Else and What It Means. Plume, 2003.

Baron, Jonathan. Thinking and Deciding. 4th ed. Cambridge University Press, 2007.

Beck, Kent. Extreme Programming Explained: Embrace Change. 2nd ed. Boston, MA: Addison-

Wesley, 2005.

Beizer, Boris. Black-Box Testing: Techniques for Functional Testing of Software and Systems. 1st ed.

Wiley, 1995.

———. Software Testing Techniques, 2nd Edition. 2 Sub. Intl Thomson Computer Pr (T), 1990.

Black, David A. The Well-Grounded Rubyist. 1st ed. Manning Publications, 2009.

Black, Rex. Managing the Testing Process: Practical Tools and Techniques for Managing Hardware

and Software Testing. 3rd ed. Wiley, 2009.

———. Pragmatic Software Testing: Becoming an Effective and Efficient Test Professional. 1st ed.

Wiley, 2007.

Bolton, Michael. “Cover or Discover.” Better Software, November 2008.

http://www.developsense.com/articles/2008-11-CoverOrDiscover.pdf.

———. “Got You Covered.” Better Software, October 2008.

http://www.developsense.com/articles/2008-10-GotYouCovered.pdf.

———. “‘Merely’ Checking or ‘Merely’ Testing.” Accessed September 21, 2012.

http://www.developsense.com/blog/2009/11/merely-checking-or-merely-testing/.

———. “Testers: Get Out of the Quality Assurance Business.” Testers: Get Out of the Quality

Assurance Business, n.d. http://www.developsense.com/blog/2010/05/testers-get-out-of-the-

quality-assurance-business/.

———. “Three Kinds of Measurement (and Two Ways to Use Them).” Better Software, July 2009.

http://www.developsense.com/articles/2009-07-ThreeKindsOfMeasurement.pdf.

Boorstin, Daniel J. The Discoverers. 1st Vintage Book ed. Vintage, 1985.

Bowman, Sharon L. Training from the Back of the Room!: 65 Ways to Step Aside and Let Them

Learn. San Francisco, CA: Pfeiffer, 2009.

191

Brooks, Frederick P. The Mythical Man-Month: Essays on Software Engineering, Anniversary

Edition. Anniversary. Addison-Wesley Professional, 1995.

Brown, John Seely, and Paul Duguid. The Social Life of Information. 1st ed. Harvard Business

Review Press, 2000.

Burke, James. Connections. Simon & Schuster, 2007.

———. The Pinball Effect: How Renaissance Water Gardens Made the Carburetor Possible - and

Other Journeys. Back Bay Books, 1997.

Carlson, Lucas, and Leonard Richardson. Ruby Cookbook (Cookbooks. 1st ed. O’Reilly Media, 2006.

Cayley, David. “How To Think About Science.” How to Think About Science. Accessed February 23,

2012. http://www.cbc.ca/ideas/episodes/2009/01/02/how-to-think-about-science-part-1---24-

listen/.

———. Ideas on the Nature of Science. Fredericton, N.B.: Goose Lane Editions, 2009.

Center for History and New Media. “Zotero Quick Start Guide,” n.d.

http://zotero.org/support/quick_start_guide.

Chabris, Christopher F, and Daniel J Simons. The Invisible Gorilla: And Other Ways Our Intuitions

Deceive Us. New York: Broadway Paperbacks, 2010.

Chang, Sau Sheong. Exploring Everyday Things with R and Ruby. 1st ed. Sebastopol, CA: O’Reilly

Media, 2012.

Collins, Harry. Tacit and Explicit Knowledge. University Of Chicago Press, 2010.

Collins, Harry M., and Martin Kusch. The Shape of Actions: What Humans and Machines Can Do.

The MIT Press, 1999.

Collins, H. M. Rethinking Expertise. Chicago: University of Chicago Press, 2007.

Collins, H. M, and T. J Pinch. The Golem : What Everyone Should Know About Science. Cambridge

[England]; New York, NY, USA: Cambridge University Press, 1994.

Cooper, Alan. The Inmates Are Running the Asylum: Why High Tech Products Drive Us Crazy and

How to Restore the Sanity. 1st ed. Sams - Pearson Education, 2004.

Cooper, Alan, Robert Reimann, and David Cronin. About Face 3: The Essentials of Interaction

Design. 3rd ed. Wiley, 2007.

Copeland, Lee. A Practitioner’s Guide to Software Test Design. Artech House, 2004.

Creswell, John W. Qualitative Inquiry and Research Design: Choosing Among Five Traditions.

Thousand Oaks: Sage Publications, 2007.

Crispin, Lisa, and Janet Gregory. Agile Testing: A Practical Guide for Testers and Agile Teams. 1st

ed. Addison-Wesley Professional, 2009.

Davis, Wade. Light at the Edge of the World: A Journey Through the Realm of Vanishing Cultures.

Douglas & McIntyre, 2007.

———. One River : Explorations and Discoveries in the Amazon Rain Forest. New York:

Touchstone, 1997.

———. The Wayfinders: Why Ancient Wisdom Matters in the Modern World. Toronto: House of

Anansi Press, 2009. http://site.ebrary.com/id/10488286.

Davis, Wade, K. David Harrison, and Catherine Herbert Howell, eds. Book of Peoples of the World: A

Guide to Cultures. 2nd ed. National Geographic, 2008.

DeMarco, Tom. “Slack: Getting Past Burnout, Busywork and the Myth of Total Efficiency.”

Accessed January 27, 2013. http://www.amazon.com/Slack-Getting-Burnout-Busywork-

Efficiency/dp/0932633617.

———. Why Does Software Cost So Much? And Other Puzzles of the Information Age. New York,

N.Y.: Dorset House Pub., 1995.

192

Dhanjani, Nitesh. Hacking: The Next Generation. 1st ed. Beijing ; Sebastopol, CA: O’Reilly, 2009.

Dorner, Dietrich. The Logic Of Failure: Recognizing And Avoiding Error In Complex Situations. 1st

ed. Basic Books, 1997.

Dyson, George. Turing’s Cathedral : The Origins of the Digital Universe. New York: Vintage Books,

2012.

Edgren, Rikard. “Questions That Testing Constantly Help Answering | Thoughts from the Test Eye.”

Accessed February 23, 2012. http://thetesteye.com/blog/2010/01/questions-that-testing-

constantly-help-answering/.

Elkins, James. Why Art Cannot Be Taught: A Handbook for Art Students. Urbana: University of

Illinois Press, 2001.

Engebretson, Pat. The Basics of Hacking and Penetration Testing: Ethical Hacking and Penetration

Testing Made Easy. Syngress the Basics. Waltham, MA: Syngress, 2011.

Evans, Eric. Domain-Driven Design: Tackling Complexity in the Heart of Software. Boston: Addison-

Wesley, 2004.

Federman, Mark, and Derrick deKerchkhove. McLuhan for Managers: New Tools for New Thinking.

Viking Canada, n.d.

Few, Stephen. Information Dashboard Design: The Effective Visual Communication of Data. 1st ed.

O’Reilly Media, 2006.

Feyerabend, Paul. Against Method. Fourth Edition. Verso, 2010.

Feynman, Richard P. The Pleasure of Finding Things Out: The Best Short Works of Richard P.

Feynman. Edited by Jeffrey Robbins. Basic Books, 2005.

———. What Do You Care What Other People Think?: Further Adventures of a Curious Character.

Edited by Ralph Leighton. W. W. Norton & Company, 2001.

Feynman, Richard P., and Ralph Leighton. Surely You’re Joking, Mr. Feynman!. Edited by Edward

Hutchings. First THUS Edition. W. W. Norton & Company, 1997.

Fiedler, Rebecca L., and Cem Kaner. “Putting the Context in Context-Driven Testing (an Application

of Cultural Historical Activity Theory),” 2009.

Fischer, Edward, Ph.D. Peoples and Cultures of the World, Peoples and Cultures of the World.

http://www.thegreatcourses.com/tgc/courses/course_detail.aspx?cid=4617.

Fleischman, Michael, and Deb Roy. “Why Verbs Are Harder to Learn than Nouns: Initial Insights

from a Computational Model of Intention Recognition in Situated Word Learning.” In

Proceedings of the 27th Annual Meeting of the Cognitive Science Society. Accessed September

27, 2012. http://media.mit.edu/cogmac/publications/cogsci_2005_final.pdf.

Flyvbjerg, Bent. Making Social Science Matter: Why Social Inquiry Fails and How It Can Succeed

Again. Oxford, UK ; New York: Cambridge University Press, 2001.

Friedl, Jeffrey E.F. Mastering Regular Expressions. Third Edition. O’Reilly Media, 2006.

Galison, Peter. Einstein’s Clocks, Poincare’s Maps: Empires of Time. W. W. Norton & Company,

2004.

Gall, John. The Systems Bible: The Beginner’s Guide to Systems Large and Small. General

Systemantics Pr/Liberty, 2003.

Gatto, John Taylor. Dumbing Us Down: The Hidden Curriculum of Compulsory Schooling. 2nd ed.

New Society Publishers, 2002.

———. Weapons of Mass Instruction: A Schoolteacher’s Journey Through the Dark World of

Compulsory Schooling. Paperback Edition. New Society Publishers, 2010.

Gause, Donald C. Are Your Lights On?: How to Figure Out What the Problem Really Is. New York,

NY: Dorset House Pub, 1990.

193

Gause, Donald C., and Gerald Weinberg. Exploring Requirements: Quality Before Design. Dorset

House, 2011.

Gawande, Atul. Better: A Surgeon’s Notes on Performance. 1st ed. Picador, 2008.

———. Complications: A Surgeon’s Notes on an Imperfect Science. Picador, 2003.

———. The Checklist Manifesto: How to Get Things Right. First Edition. Picador, 2011.

Gigerenzer, Gerd. Calculated Risks: How to Know When Numbers Deceive You. 1st ed. Simon &

Schuster, 2003.

———. Gut Feelings: The Intelligence of the Unconscious. Reprint. Penguin (Non-Classics), 2008.

Gigerenzer, Gerd, Peter M. Todd, and ABC Research Group. Simple Heuristics That Make Us Smart.

1st ed. Oxford University Press, USA, 2000.

Gilbert, Daniel. Stumbling on Happiness. Vintage, 2007.

Gladwell, Malcolm. Blink: The Power of Thinking Without Thinking. Back Bay Books, 2007.

———. Outliers: The Story of Success. Reprint. Back Bay Books, 2011.

———. The Tipping Point: How Little Things Can Make a Big Difference. Back Bay Books, 2002.

Gleick, James. The Information: A History, a Theory, a Flood. Pantheon, 2011.

Goldratt, Eliyahu M, and Jeff Cox. The Goal : A Process of Ongoing Improvement. Great Barrington,

MA: North River Press, 2008.

Gonick, Larry. The Cartoon Guide to Statistics. 1st HarperPerennial ed. New York, NY:

HarperPerennial, 1993.

Gregory, Janet. More Agile Testing: Learning Journeys for the Whole Team. Upper Saddle River, NJ:

Addison-Wesley, 2015.

Groopman, Jerome. How Doctors Think. Reprint. Mariner Books, 2008.

Hallinan, Joseph T. Why We Make Mistakes: How We Look Without Seeing, Forget Things in

Seconds, and Are All Pretty Sure We Are Way Above Average. Reprint. Broadway, 2010.

Hamilton, James. “Perspectives - Observations on Errors, Corrections, & Trust of Dependent

Systems.” Perspectives, February 26, 2012.

http://perspectives.mvdirona.com/2012/02/26/ObservationsOnErrorsCorrectionsTrustOfDepende

ntSystems.aspx.

Harford, Tim. Adapt: Why Success Always Starts with Failure. [Toronto]: Anchor Canada, 2012.

Heath, Chip, and Dan Heath. Made to Stick: Why Some Ideas Survive and Others Die. 1st ed. Random

House, 2007.

———. Switch: How to Change Things When Change Is Hard. 1st ed. Crown Business, 2010.

Hendrickson, Elisabeth. Explore It!: Reduce Risk and Increase Confidence with Exploratory Testing.

Dallas, Texas: The Pragmatic Bookshelf, 2013.

Higgins, Peter M. Nets, Puzzles, and Postmen: An Exploration of Mathematical Connections. Oxford

University Press, USA, 2009.

Hofstadter, Douglas R. Gödel, Escher, Bach: An Eternal Golden Braid. 20 Anv. Basic Books, 1999.

———. I Am a Strange Loop. Reprint. Basic Books, 2008.

———. Surfaces and Essences: Analogy as the Fuel and Fire of Thinking. New York: Basic Books,

2013.

“How Software Is Built (Quality Software): Gerald M. Weinberg: Amazon.com: Kindle Store.”

Accessed August 26, 2012. http://www.amazon.com/How-Software-Built-Quality-

ebook/dp/B004KAB9RO/ref=la_B000AP8TZ8_1_54?ie=UTF8&qid=1345979366&sr=1-54.

“How to Observe Software Systems (Quality Software): Gerald M. Weinberg: Amazon.com: Kindle

Store.” Accessed August 26, 2012. http://www.amazon.com/Observe-Software-Systems-Quality-

ebook/dp/B004LDLCAE/ref=la_B000AP8TZ8_1_55?ie=UTF8&qid=1345979617&sr=1-55.

194

Hubbard, Douglas W. How to Measure Anything: Finding the Value of Intangibles in Business. 2nd

ed. Wiley, 2010.

Huff, Darrell. How to Lie with Statistics. W. W. Norton & Company, 1993.

Hunt, Andrew, and David Thomas. The Pragmatic Programmer: From Journeyman to Master. 1st ed.

Addison-Wesley Professional, 1999.

Illich, Ivan. Deschooling Society. Marion Boyars Publishers Ltd, 2000.

Johansson, Frans. The Click Moment : Seizing Opportunity in an Unpredictable World. New York:

Portfolio/Penguin, 2012.

Johnson, Steven. The Invention of Air: A Story Of Science, Faith, Revolution, And The Birth Of

America. Reprint. Riverhead Trade, 2009.

Jorgensen, Paul. Software Testing: A Craftsman’s Approach. Fourth edition. Boca Raton, [Florida]:

CRC Press, Taylor & Francis Group, 2014.

Kahneman, Daniel. Thinking, Fast and Slow. Penguin, 2011.

Kahneman, Daniel, Paul Slovic, and Amos Tversky, eds. Judgment under Uncertainty: Heuristics and

Biases. 1st ed. Cambridge University Press, 1982.

Kaner, Cem. Bad Software: What to Do When Software Fails. New York: Wiley, 1998.

———. Foundations of Software Testing. 1st Ed. Palm Bay, FL: Context-Driven Press, 2014.

———. “Publications « Cem Kaner, J.D., Ph.D.” Accessed February 22, 2012.

http://kaner.com/?page_id=7.

———. “Software Testing as a Social Science.” presented at the STEP 2008, Memphis, May 2008.

http://www.kaner.com/pdfs/KanerSocialScienceSTEP.pdf.

Kaner, Cem, and Bach, James. “BBST Foundations.” Accessed February 22, 2012.

http://www.testingeducation.org/BBST/foundations/.

Kaner, Cem, James Bach, and Bret Pettichord. Lessons Learned in Software Testing. 1st ed. Wiley,

2001.

Kaner, Cem, and Walter P. Bond. “Software Engineering Metrics: What Do They Measure and How

Do We Know?,” 2004. http://www.kaner.com/pdfs/metrics2004.pdf.

Kaner, Cem, Jack Falk, and Hung Q. Nguyen. Testing Computer Software, 2nd Edition. 2nd ed.

Wiley, 1999.

Kaner, Cem, Sowmya Padmanabhan, and Doug Hoffman. The Domain Testing Workbook. Palm Bay,

FL: Context-Driven Press, 2013.

Keirsey, David. Please Understand Me II: Temperament, Character, Intelligence. 1st ed. Del Mar,

CA: Prometheus Nemesis, 1998.

Kernighan, Brian W., and Rob Pike. The Practice of Programming. 1st ed. Addison-Wesley

Professional, 1999.

Kernighan, Brian W., and Dennis M. Ritchie. C Programming Language. 2nd ed. Prentice Hall, 1988.

Kirk, Jerome, and Marc L Miller. Reliability and Validity in Qualitative Research. Beverly Hills:

Sage Publications, 1986. http://www.amazon.com/Reliability-Validity-Qualitative-Research-

Methods/dp/0803924704.

Klahr, David. Exploring Science: The Cognition and Development of Discovery Processes. A

Bradford Book, 2002.

“KlaymanHa1987.pdf.” Accessed January 27, 2013. http://www.stats.org.uk/statistical-

inference/KlaymanHa1987.pdf.

Koen, Billy Vaughn. Discussion of the Method: Conducting the Engineer’s Approach to Problem

Solving. Oxford University Press, USA, 2003.

195

Krug, Steve. Don’t Make Me Think: A Common Sense Approach to Web Usability, 2nd Edition. 2nd

ed. New Riders Press, 2005.

———. Rocket Surgery Made Easy: The Do-It-Yourself Guide to Finding and Fixing Usability

Problems. 1st ed. New Riders Press, 2009.

Kuhn, Thomas S. The Structure of Scientific Revolutions. 3rd ed. University Of Chicago Press,

1996.

Lehrer, Jonah. “Are Emotions Prophetic? | Wired Science | Wired.com,” 01 2012.

http://www.wired.com/wiredscience/2012/03/are-emotions-prophetic/.

———. How We Decide. 1 Reprint. Mariner Books, 2010.

———. Proust Was a Neuroscientist. Reprint. Mariner Books, 2008.

“Less Wrong.” Accessed February 18, 2013. http://lesswrong.com/.

Levitin, Daniel J. The Organized Mind: Thinking Straight in the Age of Information Overload. New

York, N.Y: Dutton, 2014.

Levy, David A. Tools of Critical Thinking: Metathoughts for Psychology. 2nd ed. Waveland Pr Inc,

2009.

Lohr, Steve. Go To. New York: BasicBooks, 2001.

Marick, Brian. Everyday Scripting with Ruby: For Teams, Testers, and You. 1st ed. Pragmatic

Bookshelf, 2007.

———. The Craft of Software Testing: Subsystems Testing Including Object-Based and Object-

Oriented Testing. 1st ed. Prentice Hall, 1994.

Martin, Robert C., ed. Clean Code: A Handbook of Agile Software Craftsmanship. Upper Saddle

River, NJ: Prentice Hall, 2009.

Maxwell, Joseph Alex. Qualitative Research Design: An Interactive Approach. Thousand Oaks,

Calif.: Sage Publications, 2005.

McLuhan, Marshall, and W. Terrence Gordon. Understanding Media: The Extensions of Man :

Critical Edition. Critical. Gingko Press, 2003.

Meadows, Donella H. Thinking in Systems: A Primer. Chelsea Green Publishing, 2008.

Menand, Louis. The Metaphysical Club: A Story of Ideas in America. 1st ed. Farrar, Straus and

Giroux, 2002.

Mighton, John. The End of Ignorance: Multiplying Our Human Potential. Vintage Canada, 2008.

———. The Myth of Ability: Nurturing Mathematical Talent in Every Child. Original. Walker &

Company, 2004.

Mlodinow, Leonard. The Drunkard’s Walk: How Randomness Rules Our Lives. Reprint. Vintage,

2009.

Morville, Peter, and Louis Rosenfeld. Information Architecture for the World Wide Web: Designing

Large-Scale Web Sites. Third Edition. O’Reilly Media, 2006.

Myers, Glenford J. The Art of Software Testing. 1st ed. Wiley, 1979.

Nachmanovitch, Stephen. Free Play: Improvisation in Life and Art. New York: G.P. Putnam’s Sons,

1990.

Norman, Donald A. The Design of Everyday Things. Basic Books, 2002.

Oberg, James. “Did Bad Memory Chips Down Russia’s Mars Probe? - IEEE Spectrum.” IEEE

Spectrum, February 16, 2012. http://spectrum.ieee.org/aerospace/space-flight/did-bad-memory-

chips-down-russias-mars-probe.

Ogilvy, David. “How to Write.” Accessed May 28, 2012. http://www.listsofnote.com/2012/02/how-

to-write.html.

196

Page, Alan, Ken Johnston, and Bj Rollison. How We Test Software at Microsoft. 1st ed. Microsoft

Press, 2008.

Pascale, Richard, Jerry Sternin, and Monique Sternin. The Power of Positive Deviance: How Unlikely

Innovators Solve the World’s Toughest Problems. Harvard Business Review Press, 2010.

Pellis, Sergio, and Vivien Pellis. The Playful Brain: Venturing to the Limits of Neuroscience.

Richmond: Oneworld, 2011.

Perry, William E., and Randall W. Rice. Surviving the Top Ten Challenges of Software Testing: A

People-Oriented Approach. Dorset House, 1997.

“Personal Names around the World.” Accessed January 28, 2013.

http://www.w3.org/International/questions/qa-personal-names.

Petroski, Henry. The Evolution of Useful Things: How Everyday Artifacts-From Forks and Pins to

Paper Clips and Zippers-Came to Be as They Are. 1ST ed. Vintage, 1994.

———. To Engineer Is Human: The Role of Failure in Successful Design. Vintage, 1992.

Petzold, Charles. Code: The Hidden Language of Computer Hardware and Software. First Paperback

Edition. Microsoft Press, 2000.

Pine, Chris. Learn to Program, Second Edition. Second Edition. Pragmatic Bookshelf, 2009.

Pink, Daniel H. A Whole New Mind: Why Right-Brainers Will Rule the Future. Rep Upd. Riverhead

Trade, 2006.

Pinker, Steven. The Stuff of Thought: Language as a Window into Human Nature. Reprint. Penguin

(Non-Classics), 2008.

Pollan, Michael. The Omnivore’s Dilemma: A Natural History of Four Meals. Penguin, 2007.

Polya, George. How To Solve It: A New Aspect of Mathematical Method. Ishi Press, 2009.

Popper, Karl. Conjectures and Refutations: The Growth of Scientific Knowledge. 2nd ed. Routledge,

2002.

Regehr, John. “Embedded in Academia : How to Debug.” How to Debug, March 1, 2013.

http://blog.regehr.org/archives/199.

Reilly, Mary, ed. Play as Exploratory Learning: Studies of Curiosity Behavior. Sage Publications,

Inc, 1974.

Robinson, Ken, and Lou Aronica. The Element: How Finding Your Passion Changes Everything.

Reprint. Penguin (Non-Classics), 2009.

“Rule Discovery 22 May 08.pdf.” Accessed January 27, 2013.

http://forum.johnson.cornell.edu/faculty/russo/Rule%20Discovery%2022%20May%2008.pdf.

Sanitt, Nigel. Science as a Questioning Process. Bristol, UK ; Philadelphia: Institute of Physics Pub,

1996.

Schlosser, Eric. Fast Food Nation: The Dark Side of the All-American Meal. First Harper Perennial

Edition. Harper Perennial, 2005.

Schneier, Bruce. “Schneier on Security: Teaching the Security Mindset.” Accessed September 21,

2012. http://www.schneier.com/blog/archives/2012/06/teaching_the_se.html.

Schulz, Kathryn. Being Wrong : Adventures in the Margin of Error. New York: Ecco, 2010.

Scott, James C. Seeing Like a State: How Certain Schemes to Improve the Human Condition Have

Failed. New edition. Yale University Press, 1999.

Senge, Peter M. The Fifth Discipline: The Art & Practice of The Learning Organization. Crown

Business, 2006. http://www.amazon.com/Fifth-Discipline-Practice-Learning-

Organization/dp/0385517254/ref=sr_1_1?s=books&ie=UTF8&qid=1348237089&sr=1-

1&keywords=Peter+Senge.

197

Senge, Peter M., Art Kleiner, Charlotte Roberts, Rick Ross, and Bryan Smith. The Fifth Discipline

Fieldbook: Strategies and Tools for Building a Learning Organization. 1st ed. Crown Business,

1994.

Sextus. Outlines of Scepticism. Cambridge Texts in the History of Philosophy. Cambridge, U.K. ;

New York: Cambridge University Press, 2000.

Shadish, William R., Thomas D. Cook, and Donald T. Campbell. Experimental and Quasi-

Experimental Designs for Generalized Causal Inference. 2nd ed. Wadsworth Publishing, 2001.

http://www.amazon.com/Experimental-Quasi-Experimental-Designs-Generalized-

Inference/dp/0395615569.

Shapin, Steven, and Simon Schaffer. Leviathan and the Air-Pump: Hobbes, Boyle, and the

Experimental Life. Reprint. Princeton University Press, 2011.

Silver, Nate. The Signal and the Noise: Why So Many Predictions Fail--But Some Don’t. New York:

Penguin Press, 2012.

Simon, Herbert A. Administrative Behavior: A Study of Decision-Making Processes in Administrative

Organizations. 4th ed. New York: Free Press, 1997.

———. The Sciences of the Artificial - 3rd Edition. Third edition. The MIT Press, 1996.

Stebbins, Robert A. Exploratory Research in the Social Sciences. Thousand Oaks, Calif.: Sage

Publications, 2001.

Stephens, Matt, and Doug Rosenberg. Extreme Programming Refactored : The Case Against XP.

Berkeley, Calif.; Berlin: Apress ; Springer, 2003.

Stevenson, John. “Are Testers Ethnographic Researchers?” The Expected Result Was 42. Now What

Was the Test?, January 18, 2011. http://steveo1967.blogspot.com/2011/01/are-testers-

ethnographic-researchers.html.

———. “What You Believe Might Not Be True. (Part 1).” The Expected Result Was 42. Now What

Was the Test?, January 26, 2011. http://steveo1967.blogspot.com/2011/01/what-you-believe-

might-not-be-true-part.html.

Sussman, Noah. “Falsehoods Programmers Believe About Time.” Accessed June 19, 2012.

http://infiniteundo.com/post/25326999628/falsehoods-programmers-believe-about-time.

Svenson, Ola, and A. John Maule, eds. Time Pressure and Stress in Human Judgment and Decison

Making. New York: Plenum Press, 1993.

Taleb, Nassim. Antifragile: Things That Gain from Disorder. New York: Random House, 2012.

Taleb, Nassim Nicholas. Fooled by Randomness: The Hidden Role of Chance in Life and in the

Markets. 2 Updated. Random House, 2008.

———. The Black Swan: Second Edition: The Impact of the Highly Improbable: With a New Section:

“On Robustness and Fragility.” 2nd ed. Random House Trade Paperbacks, 2010.

Tavris, Carol, and Elliot Aronson. Mistakes Were Made (But Not by Me): Why We Justify Foolish

Beliefs, Bad Decisions, and Hurtful Acts. Reprint. Mariner Books, 2008.

Teller. “Teller Reveals His Secrets.” Smithsonian.com, March 2012.

http://www.smithsonianmag.com/arts-culture/Teller-Reveals-His-Secrets.html.

Thomas, Dave, Chad Fowler, and Andy Hunt. Programming Ruby 1.9: The Pragmatic Programmers’

Guide. 3rd ed. Pragmatic Bookshelf, 2009.

Tittle, Peg. What If--: Collected Thought Experiments in Philosophy. New York: Pearson/Longman,

2005.

Tufte, Edward R. Envisioning Information. Graphics Pr, 1990.

———. The Visual Display of Quantitative Information. 2nd ed. Graphics Pr, 2001.

Watts, Duncan J. Everything Is Obvious: *Once You Know the Answer. Crown Business, 2011.

198

Weick, Karl E. Sensemaking in Organizations. Sage Publications, Inc, 1995.

Weinberg, Gerald M. An Introduction to General Systems Thinking. 25 Anv. Dorset House, 2001.

———. Becoming a Technical Leader: An Organic Problem-Solving Approach. Dorset House

Publishing, 1986.

———. More Secrets of Consulting: The Consultant’s Tool Kit. 1st ed. Dorset House, 2001.

———. Perfect Software and Other Illusions About Testing. Dorset House, 2008.

———. Quality Software Management, Vol. 1: Systems Thinking. Dorset House, 1991.

———. Quality Software Management, Vol. 2: First-Order Measurement. Dorset House, 1993.

———. Quality Software Management, Vol. 3: Congruent Action. Dorset House, 1994.

———. Quality Software Management, Vol. 4: Anticipating Change. Dorset House, 1997.

———. “Responding to Significant Software Events (Quality Software Management).” Accessed

August 26, 2012. http://www.amazon.com/Responding-Significant-Software-Quality-

ebook/dp/B004LDM18Q/ref=la_B000AP8TZ8_1_57?ie=UTF8&qid=1345979643&sr=1-57.

———. The Secrets of Consulting: A Guide to Giving and Getting Advice Successfully. 1st ed. Dorset

House Publishing, 1986.

———. Weinberg on Writing: The Fieldstone Method. Dorset House, 2005.

Weinberg, Gerald M., and Daniela Weinberg. General Principles of Systems Design. Dorset House,

1988.

Weinberg, Gerald M., and Gerald M. Weinberg. The Psychology of Computer Programming: Silver

Anniversary Edition. Anl Sub. Dorset House, 1998.

Weiss, John. The Calculus Direct : An Intuitively Obvious Approach to a Basic Knowledge of the

Calculus for the Casual Observer. [Scotts Valley, CA]: [CreateSpace], 2009.

Wheelan, Charles J. Naked Statistics: Stripping the Dread from the Data. First edition., n.d.

Whittaker, James A. How to Break Software: A Practical Guide to Testing W/CD. Addison Wesley,

2002.

Whittaker, James A., and Herbert H. Thompson. How to Break Software Security. Addison Wesley,

2003.

Yin, Robert K. Applications of Case Study Research. 3rd ed. Thousand Oaks, Calif: SAGE, 2012.

199

 200

